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Abstract 

 

Rangel, Rafael Lopez; Martha, Luiz Fernando Campos Ramos (Advisor). 

Educational Tool for Structural Analysis of Plane Frame Models with 

Geometric Nonlinearity. Rio de Janeiro, 2019. 200p. Dissertação de 

Mestrado – Departamento de Engenharia Civil e Ambiental, Pontifícia 

Universidade Católica do Rio de Janeiro. 

Nonlinear analysis of structures is an important task for efficient and safe 

projects, allowing the saving of material resources and the identification of second-

order effects on the behavior of structural models that may have significant 

consequences. This type of analysis is performed with iterative numerical 

algorithms, and visualization of graphic results is essential to auxiliary the 

interpretation of the analyst. For this reason, nonlinear analyses only became 

common with the advent of graphical-interactive computational applications. 

However, unlike a linear-elastic analysis, where the results provided by the program 

depend very little on the users knowledge about the solution methods, a nonlinear 

analysis requires a series of input parameters related to the numerical methods and 

thus demands a basic understanding about the solution algorithms and nonlinear 

structural behavior. With this in mind, this work aims to develop a user-friendly 

computational tool with a simple graphical interface, but with a robust solver, to 

assist the learning of geometrically nonlinear analysis of two-dimensional frame 

models. The structural analysis software Ftool, largely used by the Civil 

Engineering community and academia, was adopted to receive the new features to 

perform geometrically nonlinear analyses. In the new version of the Ftool program, 

students, engineers and researchers have the opportunity to use and test various 

solution techniques of the nonlinear system of equilibrium equations, which are 

described in detail throughout this work. The way the nonlinear analysis is 

performed allows for a full control by users over the progress of the analysis. In 

addition, graph results can be studied in the new plotting environment of the 

program. 

 

Keywords 

 Structural analysis; geometric nonlinearity; two-dimensional frame models; 

post-buckling behavior; educational software.  
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Resumo 

 

Rangel, Rafael Lopez; Martha, Luiz Fernando Campos Ramos (Orientador). 

Ferramenta Educacional para Análise Estrutural de Modelos de Pórticos 

Planos. Rio de Janeiro, 2019. 200p. Dissertação de Mestrado – Departamento 

de Engenharia Civil e Ambiental, Pontifícia Universidade Católica do Rio de 

Janeiro. 

A análise não linear de estruturas é uma tarefa de grande importância na 

execução de projetos eficientes e seguros, permitindo a economia de recursos 

materiais, ao tempo que se identifica efeitos de segunda ordem no comportamento 

do modelo que podem vir a ter consequências significativas. Esse tipo de análise é 

realizado através de algoritmos numéricos iterativos, e a visualização de resultados 

gráficos é essencial para auxiliar a interpretação do analista. Por isso, a análise não 

linear só se tornou recorrente com o advento de aplicações computacionais gráfico-

iterativas. Porém, diferentemente de uma análise linear-elástica, em que os 

resultados fornecidos pelo programa pouco dependem do conhecimento do usuário 

sobre os métodos de solução, a análise não linear requer uma série de parâmetros 

de entrada relacionados aos métodos numéricos e, portanto, exige um conhecimento 

básico por parte do usuário sobre os algoritmos de solução e comportamento do 

modelo. Tendo isso em vista, este trabalho busca desenvolver uma ferramenta 

computacional de fácil uso e com uma interface gráfica simples, porém com um 

solver robusto, para auxiliar a aprendizagem da análise geometricamente não linear 

de modelos aporticados bidimensionais. Para isso o programa de análise estrutural 

Ftool, consagrado na comunidade de Engenharia Civil e no meio acadêmico, foi 

adotado para receber os novos recursos para executar a análise com não linearidade 

geométrica. Na nova versão do Ftool, os usuários têm a oportunidade de utilizar e 

testar diversas técnicas de solução do sistema não linear de equilíbrio do modelo, 

descritas nesse trabalho. A forma como a análise é executada permite um controle 

total do usuário sobre o progresso da análise. Além disso, resultados em forma de 

gráficos podem ser estudados no novo ambiente de plotagem do programa. 

 

Palavras-chave 

Análise de estruturas; não linearidade geométrica; modelos de pórtico 

plano; comportamento pós-crítico; software educacional. 
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1. Introduction 

1.1. Initial Considerations 

Mathematical models of real physical systems can be defined as the 

formulation of equations that express their essential characteristics in order to 

represent an idealization and simplification of reality. In the case of structural 

engineering, which deals with solid medium, the conditions that the mathematical 

model of a structural system must satisfy to properly represent the behavior of the 

real structure can be divided into three groups: equilibrium conditions, 

compatibility between displacements and deformations, and the material 

constitutive law (Martha, 2017). 

The equilibrium conditions correspond to the balance of external and internal 

forces of the system. This balance must ensure the global equilibrium of the 

structure or any isolated portion. The condition of compatibility between 

displacements and deformations is expressed by kinematic equations. These are 

geometric relations that must be satisfied to ensure continuity of the structural 

model. That is, the deformed configuration of the structure must remain continuous, 

with no gaps, and compatible with its external links. Finally, the material 

constitutive law expresses a set of mathematical relations between stresses and 

strains through parameters that define how the material behaves at a macroscopic 

level. By considering these conditions, the equations that govern the behavior of 

the structure can be developed and solved by further imposing displacements 

(essential) and forces (natural) boundary conditions, which characterize the 

interaction of the system with the external environment. 

In practice, the mathematical modelling of structural systems in the field of 

computational mechanics makes use of some numerical method of domain 

discretization. This means that the continuous model is discretized into a finite 

number of degrees-of-freedom, and the governing equations form an algebraic 

system whose unknowns are discrete values of the quantities associated to the 

degrees-of-freedom. The Finite Element Method (FEM) is mostly used for this 
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purpose. In particular, the Direct Stiffness Method, a version of the FEM based on 

element stiffness to determine nodal displacements and/or rotations, is the most 

common strategy (Felippa, 2005). 

A major concern regarding the development of the finite element equations is 

that any of the described conditions of the mathematical model can be formulated 

by linear or nonlinear relations, resulting in a discretized system of the same nature. 

Therefore, a decision must be made with respect to which formulation should be 

considered for the mathematical model. 

In a linear formulation, several hypothesis are adopted to approximate the 

structural behavior and simplify the modelling and solution of the problem. The 

small displacement hypothesis considers that the displacements and rotations that 

the structure undergoes are negligible when compared to its dimensions. 

Consequently, equilibrium can be imposed on the initial (undeformed) 

configuration, and only linear terms are considered in the kinematic equations. The 

structural analysis with this consideration is called first-order analysis. The 

hypothesis that the relations of the constitutive law are linear equations with 

constant parameters results in a linear-elastic behavior of the materials. The 

material behavior is considered elastic when, after unloading the structure, it returns 

to its initial configuration with no residual deformations, and considered linear 

when stresses and strains are proportional. In addition, the natural and essential 

boundary conditions must be invariable for any level of external load, not 

depending on the deflections of the structure. If all these simplifying conditions are 

satisfied, the response of the structure becomes proportional to the applied 

solicitations, and the system of linear equations of the mathematical model can be 

solved analytically. 

Most civil engineering structures behave in a linear-elastic fashion under 

service loads. However, prior to reaching their limit of resistance, almost all 

structures would exhibit significant nonlinear response (McGuire et al., 2000). 

Therefore, it is not always possible to adopt such a simplified linear formulation, 

and a nonlinear formulation should be chosen. In structural mechanics, the 

nonlinear behavior may have a geometric, physical or boundary condition origin, 

depending on the sources of nonlinearities considered in the conditions of the 

mathematical model. 
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The geometric nonlinearity is a result of changes in the geometry of a 

structural system subjected to deflections that are relatively large when compared 

to the dimensions of its components. In this case, the consideration of large 

displacements and large rotations, as well as the inclusion of nonlinear strain terms 

to the kinematic equations, are required in the formulation of the finite element 

equations. These considerations are necessary to impose the equilibrium of the 

structural system on its deformed configuration, so that the nonlinear response of 

the structure geometry can be taken into account. This type of geometrically 

nonlinear analysis is also known as second-order analysis. Large deformations can 

also be considered in a geometrically nonlinear formulation, but it is usually 

associated with nonlinear material behavior as well. 

The physical, or material, nonlinearity occurs when the constitutive relations 

between stresses and strains are not linear, and the behavior of the material depends 

on the past states of deformation. When the intensity and/or direction of the 

externally applied loads depend on the structure displacements, which is the case 

of follower loads, the problem is said to have nonlinearity in the forces, or natural, 

boundary conditions. The displacements, or essential, boundary conditions can also 

exhibit nonlinear behavior when they are displacement dependent, such as the case 

of contact problems. 

A nonlinear analysis, of any type, aims at predicting the actual behavior of 

structures with more accuracy, as the formulation of the mathematical model 

involves fewer simplifications when compared to a linear formulation. However, 

the reason for not always considering the sources of nonlinearity, and when 

considered, not including all sources, is because it makes the modelling process 

harder and the solution much more expensive in a computational sense. The 

simulation of the nonlinear behavior involves numerical techniques to solve the 

system of equations by performing numerous linear analyses. Therefore, it is an 

important task for the analyst to decide which types of nonlinearity, if any, are 

relevant to be considered in the project. 

As stated by Bathe (1996), in an actual engineering analysis, it is good 

practice that a nonlinear analysis of a problem is always preceded by a linear 

analysis. Based on the linear response, the analyst is able to predict which 

nonlinearities will be significant and how to account for these nonlinearities most 

appropriately. 
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1.2. Motivation 

In order to make structural projects more and more economical, engineers 

have been using materials of higher resistance to reduce the consumption. The result 

is structures with increasingly slender and flexible elements. Such structures can be 

subjected to displacements of significant magnitude that, if not considered in the 

analysis, may give rise to undesirable second-order effects, such as buckling, that 

compromise the use of the structures and can lead to catastrophic failures. 

Therefore, to meet the safety and durability criteria, a second-order analysis 

becomes fundamental in some cases, especially in projects of steel frame models. 

This type of analysis involves numerical methods, and visualization of graphic 

results is essential to auxiliary its interpretation. For these reasons, the use of 

nonlinear analyses was greatly improved with the advent of graphic-interactive 

computational applications. 

The numerical techniques for solving the nonlinear system of equations in a 

second-order analysis are performed incrementally. This methodology consists of 

starting the analysis from a known equilibrium solution, normally the undeformed 

configuration, and follow the behavior of the system until a desired level of 

solicitation is reached, as the applied actions are incremented in small linear steps 

to approximate the nonlinear response in that increment. The reason for this 

incremental approach is because the nonlinear response of the structure may present 

some critical points, associated with the second-order effects, where iterative 

numerical methods would not be able to detect with a single step analysis. Thus, 

the identification of these effects can be done by studying the history of equilibrium 

solutions, and one of the main goals of a geometrically nonlinear analysis is to 

obtain the equilibrium paths of the structure. These paths are curves of the variation 

of the equilibrium configuration of the structure with a given control parameter. A 

typical curve expresses the relation between the applied load and the displacement 

associated with a certain degree-of-freedom, and can assume very complex forms 

depending on the degree of nonlinearity of the solution. 

Many incremental solution methods have been developed for capturing the 

nonlinear behavior of structures and tracing the equilibrium paths. Some of these 

methods are simpler and computationally more efficient, but limited. Others are 

more sophisticated and robust, being able to capture the response beyond critical 
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points. However, as stated by Leon et al. (2011), one single solution method may 

not be capable of solving any general nonlinear problem. Dealing with numerical 

procedures, exposes us to problems of convergence and numerical stability that 

naturally occur in these analyses. Therefore, according to Bergan et al. (1978), a 

computer program for nonlinear analysis should possess several alternative 

algorithms for the solution of the nonlinear system of equations. 

That said, the use of computer programs to perform nonlinear analyses is not 

a trivial task. In a linear-elastic analysis, the results provided by the program depend 

very little on the users knowledge about the solution methods. For frame models, 

the response is obtained analytically, within the mathematical assumptions of the 

model, and does not depend on any numerical parameter or mesh refinement of 

each beam element. On the other hand, the results of a nonlinear analysis depend 

on a series of input parameters related to the numerical solution techniques, besides 

the discretization of bars. For each problem, the analyst must select a set of 

algorithms and analysis parameters that in his/her judgment will perform the 

analysis without diverging or spending an excessive amount of computer time. The 

engineer can only base this choice on previous experiences with similar structures 

and on his/her knowledge of the available algorithms. Even for an experienced 

analyst this selection is difficult, and the alternative of running several different 

analyses is inefficient and time consuming. Thus, a nonlinear analysis demands a 

more in-depth understanding about the solution algorithms and nonlinear structural 

behavior. 

Some techniques of automatic or self-adaptive analysis are available to 

improve the efficiency and the convergence of nonlinear problems, while 

minimizing the influence of user decisions, but do not completely overcome the 

difficulties. Such procedures, even when successful, do not actively promote the 

understanding of the structural behavior. An appropriate alternative is the use of an 

interactive-adaptive technique for the nonlinear analysis. Gattass & Abel (1983) 

presented an investigation of this technique for large-displacement analysis of 

framed structures. According to these authors, interactive-adaptive methods of 

analysis are those in which the parameters and algorithms are selected or changed 

by the user during the analysis itself. These strategies allow for the possibility of an 

extensive control over the solution process, providing an efficient way to monitor 

the results and to intervene when problems appear. 
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The lack of tools that meet the requirements of performing an efficient 

nonlinear analysis of structures, by offering multiple solution options and allowing 

for an interactive-adaptive analysis, while focusing on the educational aspect, being 

accessible to those with little experience, is what motivated this work. 

1.3. Literature Review 

Two distinct numerical processes are identified in a nonlinear analysis 

problem. The first is the formulation of the problem which, in the case of the 

displacement-based FEM, consists of obtaining a system of nonlinear equilibrium 

equations. The second is the solution of the system of nonlinear equations, mostly 

done by incremental and/or iterative methods. These processes are independent. 

That is, the formulation of the system of nonlinear equations is not associated with 

any solution method, and vice-versa. However, both of them are equally important 

for obtaining a consistent response of the structural problem. Thus, due attention 

should be given to each of them. 

The period from 1960 to the mid-1980s was emblematic for researches on the 

formulation and solution of nonlinear structural engineering problems involving the 

FEM. Later advances, almost entirely, are based on the theories developed during 

this period. A historical background of some advances and accomplishments made 

in those decades is presented by Felippa (2004). In the following sections, the main 

works that contributed to the current state-of-the-art of the analysis of two-

dimensional frame structures with geometric nonlinearity will be mentioned. In 

addition, computational tools with similar purposes of the one developed in this 

work will be described. 

1.3.1. Nonlinear Formulation 

The formulation of geometrically nonlinear analysis of structures depends on 

two aspects, the theory adopted for the mathematical model of structural elements 

and the kinematic description of motion to derive equilibrium equations. For frame 

models, made of beam elements, two theories are commonly employed to 

mathematically describe the flexural behavior of these elements, the Euler-

Bernoulli theory and Timoshenko theory. 
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The Euler-Bernoulli bending theory (also known as Navier theory) originated 

from the early studies of beam elements by Leonhard-Euler and Jacob Bernoulli in 

the 18th century. This is the simplest theory for simulating flexural behavior of 

beam elements, in which element cross-sections remain plane and perpendicular to 

the longitudinal axis of the element after bending, as a result of disregarding shear 

deformations. It is the most widely used theory for both linear and nonlinear 

problems and it is implemented in most structural analysis software. Because of 

that, this theory will be adopted for the development of nonlinear equilibrium 

equations in this work. 

On the other hand, Timoshenko theory (Timoshenko & Gere, 2009) differs in 

considering, even though in a simplified fashion, shear deformation of element 

cross-sections, providing better results for analyzing slender elements. It becomes 

relevant only for beams with a length to height ratio of less than 5 (Martha, 2018), 

including analyzes with geometric nonlinearity (Rodrigues, 2019). Since the effects 

of geometric nonlinearity are generally associated with slender elements, it was 

chosen not to cover this theory in this work. Due to its greater complexity, this 

theory has been studied by several researchers. For example, Friedman & Kosmatka 

(1993) presented a stiffness matrix that can be exactly integrated and is free of 

‘shear-locking’. Schramm et al. (1994) derived a new general beam stiffness matrix 

that accounts for both bending and shear deflection. Pilkey et al. (1995) provides 

stiffness, geometric, and mass matrices for straight Timoshenko beams with 

arbitrarily shaped cross-sections and in an arbitrarily oriented coordinate system. 

Rangel & Martha (2019) presented unifying coefficients for Euler-Bernoulli and 

Timoshenko theories. In addition, several researchers have also sought higher order 

bending theories, such as Levinson (1981), Heyliger & Reddy (1988), Petrolito 

(1995), among many others. 

In a geometrically nonlinear analysis, the formulation of equilibrium 

equations is generally based on a Total Lagrangian (TL), an Updated Lagrangian 

(UL) or a Corotational (CR) kinematic description of motion. These kinematic 

formulations are similar for finite deformation problems in continuum mechanics, 

with the only difference being the reference configuration adopted to describe the 

motion of the structural elements as they deform and change shape. The UL and the 

CR formulations are used in this work. 
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Total Lagrangian and Updated Lagrangian nonlinear formulations have 

historically received more attention. Several formulations for analysis with 

geometric nonlinearity of two-dimensional frame models were developed in this 

context. Among the first works, we can mention Martin (1966), Jennings (1968), 

Mallet & Marcal (1968), Powell (1969), and Ebner & Ucciferro (1972), who 

conducted a comparative study between the previous formulations. Epstein & 

Murray (1976) developed a formulation for large deformations analogous to that of 

shell elements, presented by Budiansky (1968). 

Posteriorly, Bathe & Bolourchi (1979) compared both Lagrangian 

formulations for a three-dimensional beam element subjected to large 

displacements and rotations, but small deformations. In that work, it was verified 

the equivalence of the results for both formulations and it was concluded that the 

UL formulation is computationally more efficient for this type of problem than the 

TL formulation. Bathe (1996) further develops formulations in the Lagrangian 

framework for various finite elements, continuous and uniaxial, derived from the 

principles of continuum mechanics and an incremental approach of the Principle of 

Virtual Works. 

Alves (1993a,b) presented and compared different formulations based on the 

TL and UL descriptions. Pacoste & Eriksson (1997) introduced UL formulations 

based on improved displacement-deformation relations with nonlinearity expressed 

by trigonometric functions, including Timoshenko beam theory. Galvão (2000) 

implemented these proposed geometrically nonlinear formulations for beam 

elements and made a comparative study of their computational efficiency and 

results. Neuenhofer & Filippou (1998) presented a force-based element for 

geometrically nonlinear analysis of plane frame structures. Rodrigues (2019), based 

on the work of Burgos & Martha (2013), developed geometric stiffness matrices 

considering high-order terms of the strain tensor and interpolating functions that 

take into account the axial load acting on the element, formulated for Euler-

Bernoulli and Timoshenko theories, with the UL description. Other works include 

Wen & Rahimzadeh (1983), Chajes & Churchill (1987), Goto & Chen (1987), 

Wong & Tin-Loi (1990), Yang & Kuo (1994), Torkamani et al. (1997), and 

Nanakorn & Vu (2006). 
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The Corotational formulation, despite being an old concept, was the last to 

gain popularity in the analysis with geometric nonlinearity. Its use is especially 

widespread for analyses with finite motions but small strains of structural elements 

such as beams, plates and shells. This approach originated from the theorem of polar 

decomposition, which states that any general deformation can be uniquely 

decomposed into a rotation followed by a stretch component, or vice-versa. 

Argyris et al. (1964) presented the first work applying the Corotational finite 

element formulation to beam elements. Subsequent works that used the 

Corotational approach to frame models gave it distinct names. Some of these works 

include Jennings (1968), Powell (1969), Belytschko & Hsieh (1973), who studied 

beam elements subjected to large rotations and proposed a method based on a 

curvilinear coordinate system called convected coordinates, and Belytschko & 

Glaum (1979). Many authors describe the idea by stating that it is based on a local 

Eulerian reference system attached to elements, such as Oran (1973) and Izzuddin 

& Elnashai (1993). A good description of the CR formulation and its relation to the 

more widely used TL and UL formulations is given by Mattiasson & Samuelsson 

(1984), and Mattiasson et al. (1985). Mattiasson & Samuelsson (1984) and Hsiao 

et al. (1999) emphasize that within the corotating system, either a TL or an UL 

formulation may be employed. 

Great attention has been given to Corotational formulation since the 1990s. 

This formulation for beam elements, including Euler-Bernoulli and Timoshenko 

theories, is treated in several works, such as Crisfield (1991), who addressed 

transformation relations between the corotated and global systems. Pacoste & 

Eriksson (1995, 1997) covered the use of small displacements in the corotated 

system. Teh & Clarke (1998) compared the CR formulation to the Lagrangian 

formulations for three-dimensional structures. Souza (2000) presents a force-based 

formulation for inelastic large displacement analysis of planar and spatial frames. 

More recently, Kien (2012) developed a plane beam element for large 

displacements. Oliveira & Silva (2017) used a unified Bernoulli-Timoshenko 

element. Silva (2016) developed and implemented CR formulations for two-

dimensional Euler-Bernoulli and Timoshenko beams. Some other examples of 

works employing this formulation are Iura (1994), Crisfield and Moita (1996), 

Krenk et al. (1999), Battini (2002), and Baião (2016). 
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1.3.2. Solution Methodology 

In addition to a consistent and well-developed nonlinear formulation, robust 

and efficient solution methods for the system of equilibrium equations are 

indispensable. The most efficient methods for solving the nonlinear system of 

equations are based on an incremental approach, most of the times applied in 

conjunction with an iterative process. 

The pioneer work on incremental nonlinear structural analysis was presented 

by Turner et al. (1960), in which a series of linear analysis steps was applied to a 

problem with non-uniform heating and large displacements, updating the stiffness 

matrix at the beginning of each increment to account for changes in the geometric 

configuration, internal forces, and temperature. In subsequent years, advances were 

focused on the formulation of the nonlinear finite element equations, and the purely 

incremental approach to solving these equations continued being used. This 

technique received the contribution of several researchers at the time, such as 

Goldberg & Richards (1963), Marcal (1965), and Hibbitt et al. (1970). 

However, Mallet & Marcal (1968) and Murray & Wilson (1969) observed 

that the purely incremental methods may lead to anomalies in the solution and 

started using corrective iterations of the Newton-Raphson type to solve the 

nonlinear system at each incremental step, giving rise to the incremental-iterative 

methods. Zienkiewicz (1971) later presented a modified version of the Newton-

Raphson iteration scheme, in which the tangent stiffness matrix is updated only at 

the beginning of each incremental step. By the late 1970s, these incremental-

iterative methods enjoyed wide acceptance for geometrically nonlinear analyzes.  

One of the greatest challenges in obtaining the complete response of a 

nonlinear analysis is to reach the solution beyond critical points. The corrective 

methods based on the conventional Newton-Raphson iteration is not able to do so, 

as it works only with displacement corrections within each incremental step. Batoz 

& Dhatt (1979) presented a method capable of passing through load limit points, in 

which the iterative cycle works only with corrective load increments. Modifications 

and generalizations of this method for post-buckling and collapse analysis was also 

presented by Bergan (1980), Powell & Simons (1981), and Bergan & Simons 

(1984). However this technique cannot capture snap-back (or displacement limit) 

points. To overcome this problem, incremental-iterative methods that work with 
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corrective increments of both control variables (load and displacement), called 

continuation methods, have been developed since then. 

The main idea of the continuation methods is to restrict the iterative solutions 

to a hyper-surface that crosses the equilibrium path at one or more points. The 

equation that defines this hyper-surface is called constraint equation and must be 

added to the system of finite element equilibrium equations. A method that uses an 

arc-length to restrict the iterative corrections of load and displacement received 

great attention from the scientific community and it was recognized by Meek & Tan 

(1984) as one of the most efficient. The development of this method and its 

variations is due to the works of Wempner (1971), Riks (1972), Riks (1979), 

Crisfield (1981), Ramm (1981), Ramm (1982), Crisfield (1991), and Crisfield 

(1997). A method based on a constant increment of external work to restrict the 

iterations was studied by Powell & Simons (1981), Bathe & Dvorkin (1983), and 

Yang & McGuire (1985). Chan (1988) introduced a constraint based on the 

minimum norm of the residual displacements. Yang & Shieh (1990) and Yang & 

Kuo (1994) proposed a method based on a generalized displacement to control the 

iterative corrections, in which a modified version was recently presented by Leon 

et al. (2014). A new solution strategy was later proposed by Krenk (1995) and 

Krenk & Hededal (1995), with the introduction of an orthogonality condition 

between the iteration residue and the corresponding increment of displacement. 

The techniques for solving the system of nonlinear finite element equations 

of structural problems with geometric nonlinearity are in a satisfactory state of 

development nowadays, with robust and efficient methods for capturing the 

equilibrium path and crossing critical points. Crisfield (1997) discusses some 

numerical techniques to identify the presence of critical points in the solution. 

Silveira et al. (1999) presented a methodology for the implementation of 

incremental-iterative solution methods, in which a predicted solution is obtained 

first from a single linear analysis, and then the iterations of Newton-Raphson type 

are performed to correct the predicted solution until equilibrium is achieved. Rocha 

(2000) carried out a comparative study of several incremental-iterative solution 

methods. Maximiano (2012) introduced an alternative stabilization strategy of the 

orthogonal residue method proposed by Krenk (1995). Muñoz & Roehl (2017) 

proposed a continuation method with combined restrictions to obtain the full 

response in the presence of geometric nonlinearities and elasto-plastic softening. 
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1.3.3. Computational Tools 

Computational programs that use the FEM for structural analysis can follow 

two lines of development, based on the objectives and target audience. Some are 

industry oriented while others have a more academic or educational appeal. The 

first group includes professional programs used in design offices that usually 

require a paid license. It is natural that these programs are not concerned with 

teaching structural behavior or the methods they use to solve the problem. 

Sometimes an educational version is available with a number of limitations, but 

these programs are mostly robust and hard to use. The second group are programs 

intended for teaching structural analysis to engineering students. These programs 

are simpler to use and focus on aspects of the structural behavior that may not be 

relevant for a professional project. Some of these programs are open-source and 

explore the implementation of the solution methods. A hybrid approach can also be 

established as long as it is possible to meet the needs of both audiences. Following 

are presented some programs, with educational or hybrid approaches, that can 

perform nonlinear analyzes of reticulated models, which is the case of the tool 

developed in this work. 

The MASTAN2 (McGuire et al., 2000) is a graphical-interactive structural 

analysis program developed in the MATLAB environment that provides pre-

processing, analysis, and post-processing capabilities. The analysis routines 

provide the user the opportunity to perform first or second-order elastic or inelastic 

analyses of two or three-dimensional frames and trusses subjected to static loads. 

To solve the geometrically nonlinear problem, the program offers two single-step 

methods and two incremental-iterative methods. The first category includes the 

simple step (or Euler) method and a predictor-corrector method. The incremental-

iterative techniques are the load control and the work control methods, with the 

option to choose between the standard or modified Newton-Raphson iterative 

schemes. The program also allows for an interactive-adaptive analysis, giving the 

option to resume the analysis at any step with new input parameters. MASTAN2 is 

the successor of a family of educational programs developed in Cornell University 

Computer-Aided Instructional Facility during the 80’s. Unfortunately, there are 

very few references, if any, available to these programs. 
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The CS-ASA (Computational System for Advanced Structural Analysis) was 

initially developed by Silveira (1995), using the Fortran 77 programming language, 

to investigate the elastic instability of columns and arches with unilateral contact 

restrictions. Many research projects have used this computational system as a basis 

for the development and validation of new nonlinear formulations and solution 

strategies, applied to static and dynamic analysis of steel structures. Among them 

are the works of Rocha (2000) and Galvão (2000), when several continuation 

solution methods were implemented, Galvão (2004) also developed routines for 

vibration analysis, Machado (2005) included inelastic formulations based on the 

plastic hinge method, and Silva (2009) unified the previous implementations. Prado 

(2012) built a graphical user interface for pre-processing steps using the IUP 

(Portable User Interface) system (Levy et al., 1996), which is the same graphical 

interface development toolkit used in the application implemented for the current 

work. 

The INSANE (Interactive Structural Analysis Environment), as described by 

Pitangueira & Fonseca (2007), is a platform for scientific computation that applies 

the FEM to structural analysis problems. The program later extended its 

applications to different areas, including fluid mechanics and heat transfer, as a 

result of many research projects. The types of structural models that can be analyzed 

include trusses, frames, plates, shells, plane stress and strain models, etc. Besides 

the basic analysis with static and linear-elastic assumptions, several advanced 

analysis options are available. Germanio (2005) developed a module for dynamic 

analysis. Fonseca (2008) added geometrically nonlinear analysis to the previous 

work. Melo (2017) implemented the Corotational formulation for the nonlinear 

analysis of two-dimensional beam elements. These nonlinear implementations 

make use of the work of Fuina (2004), who implemented incremental-iterative 

methods to solve the nonlinear system of equilibrium equations, which include 

controls of load, displacement, work, arc-length, orthogonal residue, generalized 

displacement, and deformations. These methods were complemented by Jean 

(2017), who included the arc-length control method based on the rates of internal 

and dissipated energy. The program also disposes of a graphical-interactive 

environment for pre, post, and processing steps of the analysis process. It is 

developed using the JAVA programming language, and all of its modules are 

implemented using the Object Oriented Programming (OOP) paradigm. 
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The AFA-OPSM (Advanced Frame Analysis – Ouro Preto School of Mines), 

by Santana (2015), is a graphical-interactive program intended to perform 

geometrically nonlinear static analysis of two-dimensional trusses and frames. This 

program was developed using the OOP paradigm and the graphical resources of 

MATLAB. It provides in an integrated way, the phases of modeling, analysis, and 

results visualization. The nonlinear solution methods include the strategies based 

on constant load increments, variations of the arc-length control, and the minimum 

norm of the residual displacements. 

It is also worth mentioning the NLS++ library (Leon et al., 2011), developed 

in the C++ programming language, where several nonlinear solution methods are 

unified into a single space. The methods include load control, displacement control, 

work control, arc-length control, generalized displacement control, and the 

orthogonal residue procedure. The unified schemes are formulated and 

implemented such that additional nonlinear solution methods are readily 

incorporated and integration into a finite element analysis code is straightforward. 

Even though it is not a graphical program, the approach follows an educational 

philosophy. Several other libraries of nonlinear solution algorithms have been 

previously developed by Mondkar & Powell (1978), Clarke & Hancock (1990), 

Rezaiee-Pajand et al. (2009), among others. 

The FEMOOP (Finite Element Method Object Oriented Program) system 

(Martha & Parente 2002) is a library for numerical analysis of structures develop in 

the Department of Civil Engineering of PUC-Rio in the early 90’s. Its nonlinear 

analysis capabilities were implemented based on the work of Roehl (1987), which 

is one of the pioneering work on nonlinear analysis of structures within the 

mentioned department. This work considers the geometrically nonlinear analysis of 

three-dimensional frame models with end rotation release and distributed loads, 

based on the Updated Lagrangian formulation. 

Some other interesting projects, whose focus is on the educational aspects of 

structural mechanics, are the FAST (Finite Element Analysis Tool) (Parente, 2018), 

SALT (Sistema de Análise de Estruturas) (Lima, 2017), AcadFrame 

(http://www.set.eesc.usp.br/softwares_depto/acadframe), and LESM (Linear 

Elements Structure Models) (Rangel & Martha, 2019). 
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The Ftool (Two-dimensional Frame Analysis Tool) program (Martha, 1999), 

which served as basis for developing the geometrically nonlinear analysis 

application in this work, has already received some contributions in the field of 

nonlinearity. Del Savio (2004) developed a version of the program with semi-rigid 

connections, where a rotational spring finite element was implemented to perform 

elastoplastic analyses. Silva (2017) continued previous implementations on the 

analysis and design of reinforced concrete elements, by introducing the design of 

concrete columns. In that work, the Two Cycles method (Chen & Lui, 1991) was 

included to execute a simplified geometrically nonlinear analysis. This method is 

based on performing a linear-elastic analysis followed by a geometric nonlinear 

analysis with the updated tangent stiffness matrix to correct the linear results. Silva 

et al. (2016) compared the use of this simple method with the standard Newton-

Raphson iterative method and showed that the Two-Cycle scheme is capable of 

obtaining approximate results at a satisfactory level for designing reinforced-

concrete structures with smooth nonlinearities that do not reach load limit points. 

Gomes (2019) complemented previous works on reinforced concrete design with 

the insertion of physical nonlinearity by changing the stiffness of element cross-

sections to consider the effects of concrete cracking and creep, as well as the 

nonlinear relation between stresses and strains. Despite these advances, none of the 

versions of the Ftool program that include some source of nonlinearity was released, 

remaining as a tool for linear-elastic analysis of plane frame models. 

1.4. Main Objectives and Contributions 

This work describes the development and use of a graphical-interactive tool 

for geometrically nonlinear analysis of two-dimensional frame structural models, 

considering large displacements and large rotations, but small deformations in the 

elastic regime of the material behavior. Such models consist of beam elements with 

axial and flexural behavior in a single plane. In the developed tool, Euler-Bernoulli 

and Timoshenko beam theories are available for the flexural behavior (although, 

for simplicity, only Euler-Bernoulli formulation is presented in this document). 

This application was incorporated as a new feature of the Ftool (Two-dimensional 

Frame Analysis Tool) program (Martha, 1999), which is a largely used software in 

the Civil Engineering community and has demonstrated to be a valuable program 

for teaching structural analysis over the last years. 
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The development of this application aims to meet two main goals. The first 

one is focused on the academic community and seeks to provide an educational tool 

to improve users understandings about the second-order effects and the post-

buckling behavior of framed structural models. It is also intended to increase their 

sensitivity on the use of the numerical methods to obtain the nonlinear response, 

allowing studies on the influence of the input parameters to the converged solution. 

Considering the difficulties imposed by the numerical solution of a nonlinear 

analysis, which is described in details throughout this work, it is required an easy-

to-use application with intuitive resources to make it accessible not only to graduate 

students and to researchers, but also to undergraduate students. The Ftool program 

has the ideal environment for this intuitive nonlinear analysis, since the spread of 

its use was mainly due to the simplicity of the modeling and analyzing processes, 

and to the sophisticated data structure for pre and post-processing the analysis 

information. 

The second goal is focused on the industry, by supplying structural engineers 

with a software that has a robust solver and allows users to have an extensive control 

of the nonlinear analysis process. Since no algorithm is able to solve all the 

nonlinear problems, this extensive analysis control brings for the analyst a greater 

possibility to obtain the full solution of any geometrically nonlinear problem and, 

therefore, to meet the safety and durability criteria of structural projects. The 

examples of this work prove the importance and the necessity of having a large 

number of settable options and parameters to perform and control nonlinear 

analyses. 

To accomplish these goals, the developed tool has a user-friendly graphical 

interface designed to provide users with a wide range of analysis options, including 

the most well-known incremental single-step and incremental-iterative methods to 

solve the nonlinear system of equilibrium equations. An interesting feature of the 

developed application is the possibility to perform the nonlinear analysis in an 

interactive-adaptive fashion, by allowing the change of any of the analysis options 

and parameters between the incremental steps, as the analysis progresses. It is also 

possible to go back and forward in the analysis steps. These options for driving the 

analysis can help even experienced users to work with numerical algorithms, 

because when a non-converging point is found, one can change the parameters or 

use other solution methods, in the same analysis, to go beyond that point. 
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Furthermore, a sophisticated graph-plotting environment was developed, 

where users can create interactive graphs. Several options of information can be 

plotted in each axis, including the classical curve of displacement versus load, to 

study the equilibrium path of the structure. The graph data can also be selected to 

show the results for each incremental step or each iteration. 

An auxiliary program, called NLframe2D, was also developed as a parallel 

implementation for this work using the MATLAB script language. The general 

structure of the code of this program is the same of the code developed for the 

nonlinear analysis module of the Ftool program. Since the MATLAB programming 

language has a very simple syntax, when compared to the C programming language, 

this auxiliary program is used to present the implementation of the solution process 

of the nonlinear structural problem considered in this work. In addition, the program 

is open-source and is available for download in: 

https://www.mathworks.com/matlabcentral/fileexchange/73129-nlframe2d. 

1.5. Outline 

The remainder of work is divided into five chapters. The organization of the 

subjects follows the order: formulation, solution, implementation, and results. The 

next two chapters are devoted to the theory of geometrically nonlinear analysis of 

structures. The last three chapter are intended to present the developed tool, the 

provided results, and the conclusions. 

In Chapter 2, the formulation of the nonlinear structural problem is developed 

to obtain the tangent stiffness matrix of the system of finite element equilibrium 

equations. Two types of nonlinear formulation are employed, based on the 

kinematic description of motion, the Updated Lagrangian formulation and the 

Corotational formulation. For each formulation, the local tangent stiffness matrix 

of a two-dimensional beam element that follows Euler-Bernoulli theory is obtained. 

Chapter 3 starts by presenting the main reasons for the incremental approach 

in the solution of the nonlinear system of equilibrium equations, and discussing 

some important characteristics of the equilibrium path of structures, such as critical 

points and stability concepts. The overall goal of this chapter is to describe the 

general steps of the incremental solution process and present in details the theory 

behind the solution methods implemented in the developed tool. Two classes of 

methods are presented: incremental single-step and incremental-iterative methods. 
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Chapter 4 shows the developed tool, and it is divided into two main sections. 

The first section is intended to demonstrate the computer implementation of the 

solution process. The auxiliary program NLfram2D is used for this purpose. The 

MATLAB code of each solution step is provided and described. The second section 

is dedicated to presenting the new version of the Ftool program, showing the 

modifications from a user point of view, i.e., the new features in the graphical 

interface, their purposes and how to use them. 

Chapter 5 is intended to validate the results obtained by the new version of 

the Ftool program, based on the analytical or numerical solutions of four benchmark 

problems, each one with a distinct nonlinear behavior. The robustness and 

efficiency of the implemented solution methods and nonlinear formulations are also 

investigated in the chapter. For this purpose, a study on the performance of the 

methods and formulations to solve the problems is carried out, taking into account 

the number of steps and iterations to reach the solution using different analysis 

options. 

Chapter 6 brings the concluding remarks about the numerical results and 

reinforces some of the points that motivated this work. Suggestions for future works 

are also presented in the chapter. 

Chapter 7 is the bibliography, with all references cited in the text. 
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2. Geometrically Nonlinear Formulations 

2.1. Introduction 

The equations of mathematical formulations of physical phenomena are 

commonly expressed as differential equations. In most cases, these are very 

complicated equations and/or are applied to complex domains, which makes an 

analytical solution impossible to obtain. To overcome these difficulties, numerical 

methods are invoked to discretize the continuous problem into a finite number of 

degrees-of-freedom, so the differential equations can be written as algebraic 

equations. The discretized algebraic equations are normally written as a matrix 

system, in which the coefficient matrix relates state variables to control variables. 

When the displacement-based Finite Element Method is applied to discretize a 

structural mechanics problem, the state variables are displacements and rotations of 

nodal points, while the control variables are external solicitations, such as loads. 

The system matrix, in this case, is a stiffness matrix that gives information about 

the necessary forces to impose certain displacements to the structure. In a 

geometrically nonlinear analysis, this matrix is called a tangent stiffness matrix 

because of its nonlinear nature, since its coefficients involve internal forces, 

obtained from the displacements. Therefore, the stiffness coefficients are not 

constants, varying from point to point in the solution, and the “tangent” term means 

the linear approximation at any point. The tangent stiffness matrix is composed by 

a material-dependent portion, called here as elastic stiffness matrix, and a geometry-

dependent portion, called geometric stiffness matrix, responsible for accounting for 

changes in the stiffness of the system due to the large deflections. 

This chapter is intended to formulate the geometrically nonlinear structural 

problem of two-dimensional frame models using the FEM to discretize it into beam 

elements, considering Euler-Bernoulli flexural behavior. The local tangent stiffness 

matrices of this type of element are derived. Two types of formulations, based on 

the kinematic descriptions of motion, are used: Updated Lagrangian formulation 

and Corotational formulation. 
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For the Updated Lagrangian formulation, three different types of geometric 

stiffness matrix are presented for beam elements, considering distinct terms of the 

strain tensor and degrees of sophistication of the shape functions. For the 

Corotational formulation, only one tangent stiffness matrix is developed. This 

matrix is based on the common consideration that the deformations of the beam 

with respect to a corotated configuration are small, so linear strain measurement is 

used. 

2.2. Kinematic Descriptions of Motion 

Consider a continuous body, composed of material points, or particles, that 

occupy different positions in space described by coordinates on a stationary 

Cartesian axis system. In a geometrically nonlinear analysis, this body is subjected 

to large displacements, rotations, and strains that change the position of its particles, 

as well as its superficial area and volume. Thus, the body assumes different 

configurations as it moves in space and changes shape. 

In the context of the continuum mechanics, there are two ways to describe the 

movement of the body, the Eulerian description and the Lagrangian description 

(Malvern 1969). The former focuses on the analysis of particles that pass through a 

fixed spatial coordinate, and is best suited for fluid media problems where the origin 

of the particles is unknown. In contrast, the latter maps the trajectory of all particles 

of the body, using material coordinates, from the beginning of the movement to the 

end. In this way, the movement of the body is characterized by the set of positons 

occupied by the particles, which is more appropriate for solid mechanics. 

To formulate the finite element equations of the body, within the Lagrangian 

description of motion, a reference equilibrium configuration must be established for 

measuring stresses, strains, and all kinematic and static variables. In principle, any 

previously obtained equilibrium configuration can be used as the reference 

configuration. However, in practice, only the initial or the last obtained equilibrium 

configuration is used to formulate the problem because of the advantages they have 

over intermediate configurations. Based on the choice of the reference 

configuration, three kinematic descriptions are commonly used in structural 

mechanics to formulate the nonlinear system of equilibrium equations: Total 

Lagrangian (TL), Updated Lagrangian (UL), and Corotational (CR). 
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In the formulation based on the TL description of motion, the initial 

(undeformed) configuration of the analysis is taken as the reference configuration, 

which remains unchanged during the entire analysis process. Displacements, 

stresses and strains for formulating the equilibrium equations on the deformed 

(current) configuration are referred to the initial configuration of the analysis, as 

illustrated in Fig. 2.1. 

Initially, the TL formulation was the most widely used in continuum-based 

FEM codes. Its primary applications are in solid mechanics with finite but moderate 

displacements and strains, especially for elastic materials, but not reliable for 

topology changes (Felippa, 2004). 

  

Figure 2.1 – Total Lagrangian reference configuration 

In the UL formulation, the reference configuration is periodically updated to 

the last achieved equilibrium configuration. That is, after an equilibrium 

configuration is reached, it is desired to establish the equilibrium on a new deformed 

configuration, so all the static and kinematic variables for formulating the 

equilibrium equations are defined according to the previous configuration, as 

illustrated in Fig. 2.2. 

The UL formulation is useful in treating finite displacements and possibly 

very large strains as well as in processes involving topology changes, such as 

fracture (Felippa, 2004). It is also computationally more effective for beam 

elements with large displacements/rotations and small deformations, when 

compared to the TL formulation, as shown by Bathe & Bolourchi (1979). 

Furthermore, the expressions of the formulation based on this kinematic description 

are simpler than the TL formulation. 
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Figure 2.2 – Updated Lagrangian reference configuration 

In the CR formulation, the reference configuration is divided into two, so that 

rigid body displacements are separated from those that generate deformations. The 

initial configuration is used to measure rigid body movements, while a corotated 

configuration is used to measure strains and stresses in the body. The corotated 

configuration uses a local coordinate system that moves along with the body, so 

that, with respect to this system, the rigid body movements are null. Figure 2.3 

shows a schematic of this idea. This formulation is the latest among those used in 

the analysis with geometric nonlinearity and gained popularity for structural 

elements such as beams, plates and shells, especially for analyses with finite 

motions but small strains. 

  

Figure 2.3 – Corotational reference configuration 
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Despite the differences in the development of the equilibrium equations, the 

numerical solution should provide identical results using formulations based on any 

kinematic description. According to Bathe (1996), the only advantage of using one 

formulation rather than the other lies in its greater numerical efficiency. In this 

work, the UL and the CR formulations are used due to their advantages for beam 

elements when compared to the TL formulation, as previously mentioned. These 

formulations are developed next for two-dimensional Euler-Bernoulli beam 

elements. In the next section, the development of the UL formulation starts from a 

continuous body to show its generality. 

2.3. Updated Lagrangian Formulation 

For the UL formulation, a pseudo-time variable, t, is introduced. This variable 

has nothing to do with a dynamic analysis, since it is considered that the loads are 

applied very slowly. That is, the load frequencies are much lower than the natural 

frequencies of the structure, so a static analysis can be assumed. The pseudo-time 

is used to describe the configurations of a body as it moves under load effects. A 

configuration of a generic three-dimensional body is defined by its geometry 

(surface area, S, and volume, V), specific mass, ρ, and position, described by the 

Cartesian coordinates, x1, x2, x3, of each particle, at any pseudo-time. 

The structure response is then defined as a series of equilibrium 

configurations obtained as the pseudo-time varies in increments, Δt, starting from 

zero. Given that all equilibrium configurations are known from the beginning of the 

analysis to time t, it is desired to establish the equilibrium at time t + Δt, with a 

system of equations formulated based on the previous configuration (or initial 

configuration in the case of the TL formulation). 

Figure 2.4 illustrates the configurations involved, including the total and the 

incremental displacements (u1, u2, u3) between them. The time of the configuration 

in which a quantity occurs is indicated by a superscript on the left side of the 

variable that represents this quantity. Eventually, a left subscript is also used to 

indicate the time of the reference configuration for the quantity to be measured, 

especially for stresses and strains measurements. If the quantity under consideration 

occurs in the same configuration in which it is also measured, the left subscript may 

not be used. Indicial notation is also adopted in the next sections, with indexes 

varying from 1 to 3, and considering the summation convention of repeated index. 
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Figure 2.4 – Variables for the Updated Lagrangian formulation 

The development of the equilibrium equations of the displacement-based 

FEM lies on the application of the Principle of Virtual Works (PVW), specifically, 

the Principle of Virtual Displacements (PVD). In the sequence, the application of 

the PVD to a continuous body follows the work of Bathe (1996). Then the problem 

is particularized to a beam element and the FEM is used to discretize the beam into 

nodal degrees-of-freedom, so the local stiffness matrices can be obtained. 

2.3.1. Principle of Virtual Works 

The displacement-based finite element equations of the discrete mechanical 

problem can be formulated by different ways. The Principle of Virtual 

Displacements (PVD), the Principle of Minimum Potential Energy (PMPE), and 

the Galerkin version of the Weighted Residual Methods (WRM) can be employed. 

Martha (2018) shows that the energy-based methods of the PVD and the PMPE are 

both derived from the Galerkin version of the WRM, giving it a physical 

interpretation. In essence, all these methods are equivalent. The concepts of virtual 

displacements from the PVD, variation from the variational calculus used in the 

PMPE, and weighted function from the WRM, are all the same. 
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The energy-based methods are largely used in structural mechanics to 

formulate the equations of mathematical models. They are grounded in the 

Lagrangian mechanics rather than Newton’s classical mechanics that uses vector 

quantities and is not convenient for general and complex problems. The Lagrangian 

mechanics is an alternative and more formal manner of imposing equilibrium, 

compatibility, and constitutive conditions to the mathematical model of a structure. 

It is based on the Law of Conservation of Energy, a principle that can be applied to 

formulate mathematical models of physical systems in all scientific areas. This 

principle expresses the balance of internal and external energy (or work) of a 

physical system. 

For the structural systems studied here, the only type of internal energy stored 

in the body is the elastic deformation energy, WI, due to the work produced by 

internal stresses with the corresponding internal deformations. The external energy, 

WE, is the work produced by the externally applied forces with the corresponding 

displacements. The loads are applied slowly so that no vibration occurs and kinetic 

energy is zero. In addition, it is also assumed that the material has an elastic 

behavior and there is no energy dissipation by means of heat, noise, etc. Therefore, 

according to the principle of energy conservation, the work produced by the 

externally applied forces to a structure is equal to the internal energy of deformation 

stored in the structure:  

I EW W

 

(2.1) 

Based on this, it is possible to determine the displacement at the point and in 

the direction of a single force applied to the structure. However, this principle does 

not allow the calculation of displacements in a generic way. For example, if 

multiple forces are applied to the structure, or if the objective is to calculate a 

displacement at another point, a single equation – Eq. (2.1) – is not sufficient to 

determine more than one unknown displacement. The solution to this is the 

generalization of this principle to the Principle of Virtual Works (PVW). This is a 

very useful artifice for various applications in structural mechanics, involving the 

concept of a virtual work. The methods based on this concept have a generic 

character and are applicable to problems with elastic or inelastic behavior, structural 

problems with external solicitation of forces and moments, or thermal solicitations, 

as well as problems related to structural stability (Tauchert, 2007). 
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The idea behind the PVW is to work with two independent systems for the 

same structure (White et al., 1976): 

 System A: System of forces with an external load field in equilibrium 

with internal stresses. 

 System B: Deformed configuration with an external displacement 

field compatible with internal strains. 

The generality of the PVW with respect to the principle of energy 

conservation is that there is no connection (cause-effect relation) between the force 

system A and the deformed configuration B. The equality between internal and 

external virtual works, combining both systems, results in the PVW. These works 

are called virtual because they are a mere mathematical abstraction, since the two 

systems are not related in a cause-effect sense. The internal virtual work, δWI, which 

corresponds to the internal virtual energy of deformation stored in the structure, is 

produced by the internal stresses of system A with the corresponding strains of 

system B. The external virtual work, δWE, is produced by the external forces of 

system A with the corresponding external displacements of system B: 

EIW W  

 

(2.2) 

The PVW has two branches: the Principle of Virtual Forces (PVF) and the 

Principle of Virtual Displacements (PVD). In the PVF, the deformed configuration 

B is taken as the real structure, and a virtual force system A that satisfies equilibrium 

conditions is arbitrarily chosen to impose compatibility conditions to the real 

deformed configuration. 

On the other hand, the PVD is used to impose equilibrium conditions to a real 

system of external forces and internal stresses A, from a virtual deformed 

configuration B, arbitrarily chosen, that satisfies compatibility conditions. Notice 

that, since the auxiliary virtual system is independent from the real system, the 

virtual field of external displacements need only to satisfy compatibility of 

configuration B. That is, the virtual displacement field does not have to satisfy 

compatibility of the real structure (configuration A), not even essential boundary 

conditions. The only restriction is that the virtual displacements must be compatible 

with the virtual strains. The PVD is the basis of the displacement-based FEM 

equations. 
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Alternatively, the symbol δ in Eq. (2.2) can also be interpreted, in the context 

of variational calculus, as a variation with respect to a perturbation in the 

displacement field. In this way, the internal virtual work corresponds to the 

variation of the internal energy of deformation, while the external virtual work is 

equivalent to the variation of the work produced by external forces. Therefore, the 

variation of the total potential energy of the structure, δΠ, which is defined as the 

difference between the variations of the internal energy and the work of external 

forces, is zero (δΠ = δWI – δWE = 0). This interpretation corresponds to the PMPE, 

which states that the equilibrium configuration is the one that guarantees the 

stationarity of the total potential energy. This principle is largely used in structural 

mechanics, but it is restricted to conservative systems, i.e., non-dissipative systems 

in which the response is not path-dependent and there is no loss of energy (does not 

work for plasticity problems or dumped dynamical systems, for example). These 

are not limiting factors for the PVD and thus we rely on this general principle to 

develop the FEM equations, based on the UL formulation, even though the PMPE 

could be used for the type of problem dealt within this work. 

Using the PVD, the internal virtual work at any configuration of the analysis 

is given by the product of the real stresses, τij, by the virtual strains, δeij, integrated 

over the current volume of the body, as shown in Eq. (2.3). The real stresses are 

unknown and is taken as the Cauchy stress tensor, which represents the forces per 

unit of area at the current configuration. The virtual strains are the infinitesimal 

small strain tensor, compatible with a virtual displacement field, δu, imposed to the 

current configuration. 

I ij ij
V

W e dV  

 

(2.3) 

The expression of the external virtual work at any configuration of the 

analysis, considering only loads as external actions, is given in Eq. (2.4). It has 

terms associated to the work of body forces, f B, surface forces, f S, and concentrated 

forces, f. Each of these terms is obtained with the product of real applied forces by 

the imposed virtual displacements. In the case of distributed forces, this product is 

the specific virtual work, which must be integrated over the current volume or 

surface of the body. 

B S S

E i i i i i i
V S

W f u dV f u dS f u       

 

(2.4) 
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The PVD states that the internal virtual work must be equal to the external 

virtual work for any arbitrary variation on the displacement field, i.e., imposed 

virtual displacements that are compatible with the virtual strains that contribute to 

the internal virtual work. This equality is used to impose the equilibrium and is valid 

for any configuration of the analysis. Assuming that all equilibrium configurations 

are known from the beginning of the analysis to a given time t, it is desired to 

establish the equilibrium at time t + Δt. Therefore, the PVD is applied to this 

unknown configuration. The expressions of the internal and external virtual works 

at the new configuration can be written, respectively, as: 

t t

t t t t t t

I ij t t ij
V

W e d V


  

    (2.5) 

t t t t

t t t t B t t t t S S t t t t

E i i i i i i
V S

W f u d V f u d S f u
 

            

 

(2.6) 

where the strain tensor components corresponding to the imposed virtual 

displacements are like the components of the infinitesimal strain tensor, but the 

derivatives are with respect to the current coordinates at time t + Δt: 

1

2

ji
t t ij t t t t

j i

uu
e

x x
  

 
      

 

(2.7) 

We note that this is simply the application of the PVD as in a linear analysis, 

but considering a deformed configuration of the body, as a result of the large 

motions that change its position and shape. The Cauchy stresses are the real 

unknown quantities, and it is desired to determine them (left subscript is not needed 

because it occurs in the same configuration in which it is also measured). However, 

a fundamental difficulty in the general application of Eq. (2.2), using Eq. (2.5) and 

Eq. (2.6), is that the configuration of the body at time t + Δt is unknown. This is an 

important difference compared to the linear analysis, in which it is assumed that the 

displacements are infinitesimally small so that the original configuration is used to 

perform the integrations in Eq. (2.5) and Eq. (2.6). Therefore, to apply the PVD to 

the deformed configuration, it is necessary to use appropriate stresses and strains 

measurements, as discussed in the next section. 
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2.3.2. General Formulation of Continuum Mechanics 

To properly address the change in the configuration of a body, suitable 

stresses and strains measurements must be used. These measurements should be 

able to express the equilibrium of the body in a configuration not yet known in 

terms of a reference configuration already obtained. The objective is to write the 

internal virtual work with an integral over a volume that is known and to be able to 

incrementally decompose the stresses and strains in an effective manner. 

The appropriate tensors for working with large displacements and large 

rotations are the Green-Lagrange (GL) strain tensor and the second Piola-Kirchhoff 

(PKII) stress tensor, both second-order tensors. To use these tensors, a reference 

configuration must be established. In the UL formulation, the reference 

configuration to measure a quantity that occurs at the current unknown 

configuration (time t + Δt) is the last configuration at which equilibrium was 

reached (time t). If the TL formulation were used, the reference configuration 

should be the beginning of the analysis (time t = 0). 

The GL strain tensor, εij, is a symmetrical tensor that measures only finite 

deformations of the body, neglecting rigid body displacements. In a linear-elastic 

analysis, the small strain tensor does not disregard rigid body rotations, which leads, 

for example, to internal forces in a rotating beam element. This effect is obviously 

not desired in an analysis with large deflections, so the GL strain tensor treats it 

well. The indicial expression of the GL tensor to measure finite strains at the current 

unknown configuration referred to the previous equilibrium configuration is 

provided by Eq. (2.8). Notice that all derivatives are with respect to the coordinates 

of the reference configuration of the body. 

1

2

jt t i k k
t ij t t t t

j i i j

uu u u

x x x x


   
        

 

(2.8) 

The GL strain tensor, referred to the previous configuration, can be 

decomposed into a linear and a nonlinear incremental strain referred to the same 

configuration, at time t. The linear portion, eij in Eq. (2.9), corresponds to the 

infinitesimal strains, used in linear analyses. The nonlinear portion, ηij in Eq. (2.10), 

is quadratic in displacement increments. Despite only using terms up to the second-

order with respect to displacements, the GL strain tensor has no approximations, 

being valid for any level of deflections and deformations. 
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1

2

ji
t ij t t

j i

uu
e

x x

 
     

 (2.9) 

1

2

k k
t ij t t

i j

u u

x x


 
 

 

 

(2.10) 

The PKII stress tensor, Sij, is energetically conjugated with the GL strain 

tensor, which allows both to be used together. Just like the GL tensor, the PKII 

tensor is symmetrical and invariant for rigid body displacements. It can be obtained 

from the Cauchy stress tensor, and its indicial expression to measure the stresses at 

the current unknown configuration referred to the previous equilibrium 

configuration is given in Eq. (2.11). Although it is used to measure stresses acting 

on a body, the components of this tensor have no physical meaning. It is only used 

to formulate the nonlinear problem, and it is not a result of interest in the analysis. 

ttt
jt t t ti

t ij mnt t t t t t

m n

xx
S

x x






 

  

  
       

 

(2.11) 

Using the GL strain tensor and the PKII stress tensor, both referred to the 

previous equilibrium configuration of time t, the expression of the internal virtual 

work at the unknown configuration of time t + Δt, given in Eq. (2.5), can be 

rewritten as: 

t

t t t t t t t

I t ij t ij
V

W S d V    

 

(2.12) 

This expression is equivalent to Eq. (2.5), but integrating over a known 

volume of the body to calculate the internal virtual work at the configuration of time 

t + Δt. In this expression, the stresses ,
t t

t ijS
, and strains, 

t t

t ij


, are unknown. Since 

the reference configuration for the GL and PKII tensors is the same, it is possible 

to decompose them into a known term of strains and stresses that occur at the 

configuration of time t, plus an unknown increment of these quantities in the 

interval [t, t + Δt], also referred to the configuration of time t: 

t t t

t ij t ij t ij      (2.13) 

t t t

t ij t ij t ijS S S  

 

(2.14) 

The left superscript to indicate the configuration of the increments of GL 

strains, t ij , and PKII stresses, t ijS , is not needed and has been dropped. 
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It should be noted that the GL strains that occur at any configuration, referred 

to that same configuration, are null ( 0t

t ij  ). The strain increment can be 

decomposed into the linear and quadratic portions with respect to the increments of 

displacements in the interval (
t ij t ij t ije   ), given in Eq. (2.9) and Eq. (2.10). In 

addition, the PKII stresses that occur at any configuration, referred to that same 

configuration, correspond to the Cauchy stresses (
t t

t ij ijS  ). Therefore, the 

incremental decomposition of strains and stresses can be expressed as: 

t t

t ij t ij t ij t ije       (2.15) 

t t t

t ij ij t ijS S  

 

(2.16) 

Replacing the incremental decomposition of strains and stresses into 

Eq. (2.12), we arrive at the expression for the internal virtual work at the unknown 

configuration of time t + Δt in terms of increments of strains and stresses referred 

to the known configuration of time t, given in Eq. (2.17). Equation (2.18) is obtained 

by multiplying the terms. 

  
t

t t t t

I ij t ij t ij t ij
V

W S e d V       (2.17) 

t t t

t t t t t t t

I ij t ij ij t ij t ij t ij
V V V

W e d V d V S d V           

 

(2.18) 

The external virtual work at the configuration of time t + Δt, given in Eq. 

(2.6), can be obtained from the integral of the external forces over the volume and 

surface of any configuration of the analysis, since it is being considered that the 

loads do not vary with the geometry (linearity in natural boundary conditions). 

Therefore, this term, given in Eq. (2.19), will be treated the same as in a linear 

analysis by the FEM. 

t t

t t t t B t t t S S t t t

E i i i i i i
V S

W f u d V f u d S f u          

 

(2.19) 

The general expression of the PVD application is given in Eq. (2.20), by 

equating the internal and external virtual works at the configuration of time t + Δt. 

This equation is valid for any level of displacements, rotations and deformations 

that a continuous body undergoes since no approximation has been made to derive 

it. 

t t t

t t t t t t t

t ij t ij ij t ij E ij t ij
V V V

S d V d V W e d V           

 

(2.20) 
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2.3.3. Linearization of the Principle of Virtual Works 

The solution of the general equation of the PVD, presented in Eq. (2.20), 

cannot be obtained directly, as it is nonlinear with respect to the increments of 

displacements in the interval [t, t + Δt]. It must be linearized, disregarding high-

order terms of displacement increments, in order to obtain a tangent approximation. 

In that equation, the variation of the linear and nonlinear portions of the GL strain 

increment are expressed, respectively, as: 

1

2

ji
t ij t t

j i

uu
e

x x

 
        

 (2.21) 

1 1

2 2

k k k k
t ij t t t t

i j i j

u u u u

x x x x


   
     

   

 

(2.22) 

Now, it is possible to observe that the second integral on the left hand side of 

Eq. (2.20) is already linear in displacement increments. In that integral, the Cauchy 

stresses at time t are known and the variation of the nonlinear portion of the GL 

strains increment has two components, given in Eq. (2.22). In each component, the 

virtual term is determined and multiplies a real linear term. 

The integral on the right hand side is also linear. Again, the Cauchy stresses 

at time t are known quantities as well as the variation of the linear portion of the 

GL strains increment, as seen in Eq. (2.21). Therefore, the only term of Eq. (2.20) 

that must be linearized is the first integral on the left hand side. 

The increment of stresses are obtained from the constitutive law of the 

material. In this work, it consists of a constant fourth-order tensor, Cijrs, that relates 

the second-order tensors of stresses and strains (linearity in constitutive relations). 

When the strain increments are considered very small, the following assumptions 

may be adopted (Yang & Kuo, 1994): 

t ij ijrs t rsS C e  (2.23) 

t ij t ije  

 

(2.24) 

Replacing these relations into the first integral of Eq. (2.20), we arrive at the 

linearized equation of the PVD applied to configuration of time t + Δt based on the 

UL formulation (referred to configuration of time t), for continuum mechanics: 

t t t

t t t t t t t

ijrs t rs t ij ij t ij E ij t ij
V V V

C e e d V d V W e d V          

 

(2.25) 
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It should be noted that the integral on the right hand side is the internal virtual 

energy of deformation corresponding to the configuration of time t. Since this is an 

equilibrium configuration, the internal virtual energy is equal to the external virtual 

work of the same configuration. Therefore, Eq. (2.25) can be rewritten as: 

t t

t t t t t t

ijrs t rs t ij ij t ij E E
V V

C e e d V d V W W        

 

(2.26) 

The first integral, obtained by linearization, corresponds to the component of 

internal virtual energy of deformation that depends on the linear portion of the GL 

strain tensor, called here as the linear component of internal virtual energy, L

IW . 

The second integral provides the nonlinear component of internal virtual energy, 

NL

IW , which depends on the variation of the nonlinear portion of the GL strains. 

It is important to mention that the linearized PVD equation corresponds to the 

linear system of incremental equilibrium equations resulting from the FEM 

discretization. By applying the FEM, as it will be done in a later section, the internal 

and external energy components of Eq. (2.26) can be expressed in terms of the 

vector of nodal displacements of the element, {U}. It turns that the linear and 

nonlinear components of internal virtual energy give origin to the elastic stiffness 

matrix, [KE], and geometric stiffness matrix, [KG], respectively. The external virtual 

work originates the vector of nodal loads, {P}, in the corresponding configuration. 

Equations (2.27) to (2.30) show the results of the finite element discretization of 

each energy component in terms of the nodal displacements of a generic element. 

    
TL

I EW U K U  

 

(2.27) 

    
TNL

I GW U K U    (2.28) 

   Tt t t t

EW U P     (2.29) 

   Tt t

EW U P    (2.30) 

Substituting these expressions of finite element discretization into the 

linearized PVD equation of the continuum mechanics, given by Eq. (2.26), we 

obtain a discrete PVD equation: 

              T T t t t

E GU K K U U P P    

 

(2.31) 
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The virtual displacements are arbitrary and can be cancelled from both sides 

of the equation. The tangent stiffness matrix of the element, [KT], is identified as 

the sum of the elastic and geometric stiffness matrices. Therefore, the linear system 

of incremental equilibrium equations, resulting from the FEM application to the 

linearized PVD equation, is given in Eq. (2.32), where {ΔP} is the increment of 

nodal loads between times t and t + Δt.  

    TK U P 

 

(2.32) 

This linear system provides the increment of nodal displacements 

corresponding to an increment of nodal loads, assuming a tangent approximation to 

the nonlinear solution. The methods  to solve the incremental system, including 

iterative techniques to get rid of the error caused by the linear approximation, are 

presented in the next chapter. The following sections are dedicated to obtaining the 

tangent stiffness matrix (elastic and geometric stiffness matrices) of a two-

dimensional beam element. This is done by determining the linear and nonlinear 

components of internal virtual energy in terms of the continuous displacement fields 

of the beam element, and then applying the FEM to obtain the relations of Eq. (2.27) 

and Eq. (2.28). 
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2.3.4. Formulation for Two-Dimensional Beam Elements 

The structural element of interest in this work is the beam element, with axial 

and transverse behavior in a single plane. The xy pair of axes will be designated to 

represent the longitudinal (axial) and transverse directions of the element. The 

displacement components in these directions, at any point of the element cross-

section, are represented by the variables u(x, y) and v(x, y), and variables u0(x) and 

v0(x) for the displacement components at the cross-section center of gravity. The 

displacements of the center of gravity will be used to define the displacement field 

of the reticulated element. In addition, the cross-section rotation is represented by 

θ(x). Figure 2.5 illustrates the displacement field in the interior of a beam element, 

where L is the element length. 

  

Figure 2.5 – Displacement field in the interior of a beam element (adapted from Martha, 2018) 

According to Euler-Bernoulli beam theory, the rotation angle of the cross-

section can be approximated by its tangent and it is related to the transverse 

displacement of the center of gravity as: 

 
 0v x

x
x







 

(2.33) 

The result of this consideration is that plane cross-sections remain plane and 

normal to the element longitudinal axis after bending. Unlike Timoshenko beam 

theory, the shear distortion is neglected, which leads to an approximation that 

provides good results for slender elements. A comparison of both beam theories is 

illustrated in Fig. 2.6. 
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Figure 2.6 – Comparison between Euler-Bernoulli and Timoshenko bending theories (adapted 

from Martha, 2018) 

Considering Euler-Bernoulli beam theory, the displacement field in the 

interior of the beam element can be expressed in terms of the axial and transverse 

displacements of the cross-section center of gravity as: 

       
 0

0 0,
v x

u x y u x y x u x y
x




    


 (2.34) 

   0,v x y v x

 

(2.35) 

The components of internal virtual energy of the linearized PVD equation, 

based on the UL formulation, will be determined for this type of element 

considering the stresses and strains present in an Euler-Bernoulli beam. Since all 

quantities in Eq. (2.26) are referred to the configuration of time t, the left indexes 

will be dropped to simplify the notation. 

In two-dimensional frame elements, there are two components of the Cauchy 

stress tensor acting on the element cross-section, a normal and a shear component, 

and two associated components of Green-Lagrange strains. These stresses and 

strains components are written in vector form as shown below, with the strains 

decomposed into the linear and nonlinear portions. 

xx

xy





  
 
  

                        
xx xx xx

xy xy xy

e

e

 

 

          
      

          

 

(2.36) 

According to Eq. (2.9) and Eq. (2.10), the linear and nonlinear portions of the 

GL strains related to the axial and transverse displacements are: 
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xx

u
e

x





 (2.37) 

2 2
1

2
xx

u v

x x


     
           

 

(2.38) 

1

2
xy

u v
e

y x

  
  

  
 (2.39) 

1

2
xy

u u v v

x y x y


    
  

    

 

(2.40) 

Replacing the axial and transverse displacement fields of the beam element, 

given in Eq. (2.34) and Eq. (2.35), into the previous expressions, the strains can be 

written in terms of the displacements of the cross-section center of gravity: 

2

0 0

2xx

u v
e y

x x

 
 
 

 (2.41) 

22 2 2 2
20 0 0 0 0

2 2

1
2

2
xx

u v v u v
y y

x x x x x


         
                   

 

(2.42) 

0xye   (2.43) 

2

0 0 0 0

2

1

2
xy

v v v u
y

x x x x


    
  

    

 

(2.44) 

The constitutive tensor is represented by the 2x2 matrix that relates the 

vectors of stresses and strains components. For the case of a material with linear-

elastic behavior, this constitutive matrix is shown in Eq. (2.45), where E is the 

elastic modulus and G is the shear modulus, which are constants during the analysis. 

0

0

E

G

 
 
 

 

(2.45) 

The first integral on the left hand side of Eq. (2.26), is the term that provides 

the linear component of the internal virtual energy of deformation (component that 

depends on the linear portions of the GL strain tensor). Substituting Equations 

(2.36), (2.41), (2.42), (2.43), (2.44), and (2.45) into that integral, and recognizing 

that 
A
dA A , 0

A
ydA  , and 

2

A
y dA I , where A and I are respectively the area 

and moment of inertia of the cross-section, the linear component of internal energy 

can be developed as follows. A typical assumption of the small strain analysis is 

that the cross-section properties of area and moment of inertia remain constants. 
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4L

I ijrs rs ij xx xx xy xy
V V V

W C e e dV Ee e dV Ge e dV          (2.46) 

2 2

0 0 0 0

2 2
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L
L

I
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u v u v
W E y y dxdA

x x x x

     
       

     
 

 

(2.47) 

2 2

0 0 0 0

2 2
0 0

L L
L

I

u u v v
W EA dx EI dx

x x x x

   
    

   
 

 

(2.48) 

The nonlinear component of internal virtual energy (component that depends 

on the variation of the nonlinear portions of the GL strain tensor) is provided by the 

second integral on the left hand side of Eq. (2.26). By decomposing the stresses and 

strains of that integral into axial and shear components, as in Eq. (2.36), we obtain: 

NL

I ij ij xx xx xy xy
V V V

W dV dV dV             

 

(2.49) 

This expression can be developed by including or not the second-order 

gradients of the nonlinear portions of the GL strain tensor. The result of this 

consideration will be reflected in the degree of sophistication of the element 

geometric stiffness matrix. Disregarding the high-order terms of the nonlinear 

portions of GL strains, the following approximations are adopted: 

2 2

0 01

2
xx

u v

x x


     
           

               0xy   (2.50) 

Using these approximations in Eq. (2.49), we obtain a simplified expression 

for the nonlinear component of internal energy: 

2 2

0 0
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2

L
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I xx
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u v
W dxdA

x x


      
                

 

 

(2.51) 

Otherwise, if all terms of the nonlinear portions of GL strains are considered, 

as in Eq. (2.42) for axial strains and Eq. (2.44) for shear strains, the expression of 

the nonlinear component of internal energy becomes: 
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 
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(2.52) 
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Consider the equilibrium relations of Eq. (2.53), where P, Q, and M are the 

resulting axial force, shear force, and bending moment in the element cross-section. 

Then, the development of the simplified and high-order expressions of the nonlinear 

component of internal energy results in Eq. (2.54) and Eq. (2.55), respectively. 

xx
A

dA P            xy
A

dA Q             xx
A

y dA M    (2.53) 
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(2.54) 
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

 

(2.55) 

2.3.5. Finite Element Discretization 

The use of the Finite Element Method aims to discretize the continuous 

displacement field of the elements into nodal degrees-of-freedom. Each node of a 

2D beam element has three degrees-of-freedom, two translations and one rotation. 

Figure 2.7 indicates the six nodal displacements of a beam element (translations 

𝑑𝑥1
′ , 𝑑𝑦1

′  , 𝑑𝑥2
′ , 𝑑𝑦2

′ , and rotations 𝜃1, 𝜃2) that moves and bends in a single plane, in 

the directions of the degrees-of-freedom in the local axis system of the element. 

The local displacements are identified by a single quote mark and they are grouped 

in vector {dl} of Eq. (2.56). Notice that the rotation components about the out-of-

plane z-axis are the same for local and global axis systems. 

  

Figure 2.7 – Nodal displacements of a plane beam element in its local axis system 

   1 1 1 2 2 2

T

l x y x yd d d d d     

 

(2.56) 
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These nodal displacements are split into axial and flexural components. Axial 

displacements act in local x-axis direction and they are grouped in vector {u} of Eq. 

(2.57). Flexural displacements are the transverse components that act in local y-axis 

direction and the in-plane rotations, which are grouped in vector {v} of Eq. (2.58). 

   1 2

T

x xu d d 

 

(2.57) 

   1 1 2 2

T

y yv d d   

 

(2.58) 

Shape functions are used to interpolate the displacements and rotation along 

the length of the element with the nodal values. Each interpolating shape function, 

Ni(x), represents the deformed configuration of the element when a unit 

displacement or rotation is imposed to the corresponding degree-of-freedom. 

Therefore, the axial and transverse displacements of the cross-section center of 

gravity can be written in terms of the nodal values and interpolating functions, as 

illustrated in Fig. 2.8 for each elementary deformed configuration. The nodal values 

of displacements and rotations are the unknowns of the discrete problem, since the 

shape functions are pre-defined for each element type. 

  

Figure 2.8 – Interpolation of elementary deformed configurations 

The interpolation of the displacement fields of the beam element is obtained 

by superposition of the elementary deformed configurations: 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



57 

 

     0 1 1 4 2x xu x N x d N x d      (2.59) 

         0 2 1 3 1 5 2 6 2y yv x N x d N x N x d N x        

 

(2.60) 

These interpolations are written in vector form as follows: 
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 (2.61) 
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(2.62) 

In the case of beam elements, the shape functions usually employed to 

interpolate the element displacements are obtained from the homogeneous solution 

of the differential equations that govern the axial and flexural behaviors of the 

element. In a first-order analysis, the differential equation of beam elements, 

formulated for an undeformed infinitesimal element, is a second-order equation for 

the axial behavior and a fourth-order equation for the flexural behavior. Therefore, 

the shape functions are linear for axial displacements interpolation and cubic for 

flexural displacements interpolation (also known as Hermitian functions). The 

results for the axial shape functions, which do not depend on the adopted bending 

theory, are: 

 1 1
x

N x
L

   (2.63) 

 4

x
N x

L


 

(2.64) 

The Hermitian shape functions for interpolating flexural displacements of 

beam elements that follow Euler-Bernoulli bending theory are: 

  2 3

2 2 3

3 2
1N x x x

L L
    (2.65) 

  2 3

3 2

2 1
N x x x x

L L
  

 

(2.66) 

  2 3

5 2 3

3 2
N x x x

L L
   (2.67) 

  2 3

6 2

1 1
N x x x

L L
  

 

(2.68) 
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Since the shape functions represent the exact solution of the differential 

equations of beam elements, no approximation is made in the interpolation of the 

displacement fields to the nodal points, providing analytical results for first-order 

analyses. Therefore, in a linear analysis, the discretization of beam elements into 

multiple sub-elements is not needed because it does not change the results. 

In a geometrically nonlinear analysis, these interpolating functions do not 

represent the exact deformed configuration, as they are the solution of differential 

equations formulated for small displacements. In this case, elements refinement are 

necessary to converge for better results. However, if the differential equation of 

bending behavior is formulated considering the equilibrium of an infinitesimal 

element in its deformed configuration, the resulting shape functions can better 

represent the nonlinear solution by including the internal axial force in their 

expressions. Rodrigues (2019) developed shape functions based on this assumption 

for Euler-Bernoulli and Timoshenko bending behaviors. These complete shape 

functions are not reproduced here due to their complexity and size, but can be found 

in the referred work. 

Based on the presented expressions of internal energy and shape functions, 

the local tangent stiffness matrix of an Euler-Bernoulli beam element is obtained in 

the following sections. The tangent stiffness matrix is composed of a linear (or 

elastic) portion, which depends on the elastic properties of the elements, and a 

geometric portion that depends on the elements internal forces to account for 

geometry changes. The elastic stiffness matrix is the same used in a linear-elastic 

analysis. The development of the geometric stiffness matrix takes into account the 

degree of sophistication of the adopted shape functions and the inclusion, or not, of 

high-order terms of the nonlinear portions of the GL strain tensor to the expression 

of the virtual energy of deformation. Accordingly, different forms of the geometric 

matrix can be obtained, as shown in the sequence. 

The local tangent stiffness matrix of each beam element is used to assemble 

the global stiffness matrix of the structure. The assembly process is identical to a 

linear analysis, using the Direct Stiffness Method to rotate each local matrix to the 

global axis system and insert the stiffness coefficients to the correct position of the 

global tangent stiffness matrix. This process is slightly covered in Section 4.2.2, but 

details can be found in almost any book on matrix structural analysis. 
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2.3.5.1. Elastic Stiffness Matrix 

The elastic stiffness matrix is obtained from the linear component of virtual 

internal energy, given in Eq. (2.48). Applying the interpolation of axial and 

transverse displacements, as in Eq. (2.61) and Eq. (2.62), it is possible to rewrite 

the expression of virtual internal energy in terms of the vectors of shape functions 

and nodal displacements: 

 
   

 

 
   

 

0

2 2

2 2
0

L

I

T
L

T u u

T
L

T v v

W

N N
u EA dx u

x x

N N
v EI dx v

x x

 

  
  

   

  
  

   





 

(2.69) 

Using the shape functions given in Eq. (2.63) to Eq. (2.68) and integrating the 

terms inside the brackets of Eq. (2.69), the elastic stiffness coefficients are obtained. 

The first integral results in the stiffness coefficients related to axial degrees-of-

freedom, while the second integral gives the stiffness coefficients of flexural 

degrees-of-freedom. The complete elastic stiffness matrix of an Euler-Bernoulli 

beam element is shown next, including all degrees-of-freedom: 

 

3 2 3 2

2 2

3 2 3 2

2 2

0 0 0 0

12 6 12 6
0 0

6 4 6 2
0 0

0 0 0 0

12 6 12 6
0 0

6 2 6 4
0 0

E

EA EA

L L

EI EI EI EI

L L L L

EI EI EI EI

L L L L
k

EA EA

L L

EI EI EI EI

L L L L

EI EI EI EI

L L L L

 
 

 
 
 
 
 
 


 
 

 
 

   
 
 

  

 

(2.70) 

2.3.5.2. Geometric Stiffness Matrices 

The geometric stiffness matrix is originated from the nonlinear component of 

virtual internal energy, using the simplified expression of Eq. (2.54) or the high-

order expression, which considers all terms of the Green-Lagrange strains, shown 
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in Eq. (2.55). In both formulations, it is possible to adopt the Hermitian or the 

complete shape functions to interpolate the field of transverse displacements, giving 

rise to different geometric matrices. 

Considering the simplified expression of internal energy, the interpolation of 

axial and transverse displacements can be applied to Eq. (2.54), so the nonlinear 

component of virtual internal energy is expressed in terms of the vectors of shape 

functions and nodal displacements: 

 
   

 

 
   

 

0

0

NL

I

T
L

T u u

T
L

T v v

W

N N
u P dx u

x x

N N
v P dx v

x x

 

  
  

   

  
  

   





 

(2.71) 

Doing the same for the high-order expression of internal energy, Eq. (2.55) 

can be expressed in terms of shape functions and nodal displacements as: 

 
   

 

 
   
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L
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L
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 

  
  

   

  
  

   

  
  

   

  
  

   

  
  

   

  
  

   














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 

   
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(2.72) 
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Three types of geometric matrix are used in this work, based on the simplified 

or high-order expressions of internal energy: Small Rotation 2nd Order (SR2O), 

Large Rotation 2nd Order (LR2O), and Large Rotation 4th Order (LR4O). 

The SR2O geometric stiffness matrix is originated from the simplified 

expression of internal energy, using the Hermitian shape functions for interpolating 

flexural displacements. This matrix, resulting from the integration of axial and 

flexural terms of Eq. (2.71), is given in Eq. (2.73). This is the simplest and most 

usual geometric stiffness matrix for two-dimensional frame elements with Euler-

Bernoulli bending behavior, which considers only axial force effects. 

 
2

0 0 0 0

6 6
0 0

5 10 5 10

2
0 0

10 15 10 30

0 0 0 0

6 6
0 0

5 10 5 10

2
0 0

10 30 10 15

G SR T

P P

L L

P P P P

L L

P PL P PL

k
P P

L L

P P P P

L L

P PL P PL

 
 

 
 
 
 
  
 

  
 
 
 

   
 
 

   

 

(2.73) 

The LR2O matrix, used by Chen (1994), is obtained from the high-order 

expression of internal energy, using again the Hermitian shape functions for 

interpolating flexural displacements. The integration of the first two terms of Eq. 

(2.72) results in the same stiffness coefficients of the SR2O matrix, which account 

only for axial force effects. The integration of the additional terms results in the 

stiffness coefficients that correspond to the interaction between axial force and 

bending behavior, in order to better capture the geometric nonlinearity. 

Considering a constant shear force over the length of the element, the internal 

bending moment and shear force can be expressed as a function of the bending 

moment values at the ends of the element as:  

1 2M M
Q

L


 

 

(2.74) 

1 2
1

M M
M M x

L


  

 

(2.75) 
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Integrating the terms of Eq. (2.72), with the Hermitian shape functions, and 

expressing the shear force and bending moment as in Eq. (2.74) and Eq. (2.75), the 

stiffness coefficients are combined into a single geometric stiffness matrix as 

follows: 

 
   

   
1 2

2

2 3

G G

G TLR T

G G

k k
k

k k

 
  
  

 

(2.76) 

 
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3 21
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0

6 12 6
0

5 10

6 2 4

10 15

G

MP

L L

P PI P PI
k

L AL AL

M P PI PL PI
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 
 

 
   
 
 
   
  

 

(2.77) 
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L AL AL
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 
  
 
    
 
 
    
  

 

(2.78) 
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L L
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k
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 
 
 
    
 
 
   
  

 

(2.79) 

Finally, to obtain the LR4O geometric stiffness matrix, the complete shape 

functions for flexural displacements, presented by Rodrigues (2019), must be 

applied to the high-order expression of internal energy. This matrix can be found in 

the referred work. 
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2.4. Corotational Formulation 

As a frame structure is loaded and moves from its original configuration, each 

beam element is subjected to three types of motion: it translates, rotates, and 

deforms. The rotation and translation are rigid-body motions, which do not generate 

internal forces and may be removed from the total motion of the beam. Thus, the 

idea of the Corotational formulation is to separate rigid-body modes from local 

deformations. The initial configuration is used as reference to measure rigid-body 

motions in the global axis system, which remains stationary. A corotated 

configuration that continuously translates and rotates with the element is used as 

the reference to measure deformations in a local axis system, called natural system. 

With respect to the corotated configuration, the rigid-body motions are null and 

only the relative displacements that cause deformations to an element are present. 

When using this formulation, the relative displacements, measured in the 

natural system, can even be considered small. Therefore, the element can be 

formulated as linear (infinitesimal strains) in the natural system, with the geometric 

nonlinearity being introduced in the transformation between the reference systems. 

In this case, the formulation can handle arbitrarily large rigid motions, with small 

deformations along the element. Such characteristic turned the Corotational 

formulation popular for analyses with finite motions but small strains, especially 

for structural elements such as beams, plates and shells. 

Based on this approach, the tangent stiffness matrix of a two-dimensional 

Euler-Bernoulli beam element, subjected to large displacements/rotations but small 

deformations, is developed in this section. The presented theory follows the works 

of Crisfield (1991), Souza (2000), and Baião (2017). 

2.4.1. Global and Natural Systems 

As previously mentioned, the corotated configuration uses a local system to 

which the deformations of the element are measured. This local system moves with 

the element and is called natural system. Figure 2.9 shows the initial, deformed, and 

corotated configurations of a beam element, as well as the displacement 

components in global and natural systems. The global nodal coordinates of the 

initial configuration are defined as (x1, y1) for the first node, and (x2, y2) for the 

second node. 
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Figure 2.9 – Displacements in global and natural systems 

The total displacements of the element degrees-of-freedom, with respect to 

the initial configuration, are measured in the global axis system XY. These 

displacements (translations 𝑑𝑥1, 𝑑𝑦1 , 𝑑𝑥2, 𝑑𝑦2, and rotations 𝜃1, 𝜃2) are grouped in 

vector {dg} of Eq. (2.80). 

The natural system has three components of displacements that effectively 

cause strains and stresses in the element. They are an elongation, un, with respect to 

the initial configuration, and two relative rotations to the corotated configuration, 

θn1 and θn2. The displacement components of the natural system are grouped in 

vector {dn} of Eq. (2.81). 

   1 1 1 2 2 2

T

g x y x yd d d d d  

 

(2.80) 

   1 2

T

n n n nd u  

 

(2.81) 

The element elongation, responsible for axial deformation, is given by the 

difference between the lengths of the element in the corotated and initial 

configurations, according to Eq. (2.82). The element length can be obtained directly 

from the nodal coordinates in each configuration, according to Eq. (2.83) and Eq. 

(2.84). 
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0nu L L 

 

(2.82) 

   
2 2

0 2 1 2 1L x x y y   

 

(2.83) 

         
22

2 2 1 1 2 2 1 1x x y yL x d x d y d y d       

 

(2.84) 

The nodal rotations relative to the corotated configuration, responsible for 

flexural deformations and the arising of bending moments and shear forces, are 

obtained from the difference between the total rotation of nodes and the rigid-body 

rotation of the element, α, according to Eq. (2.85) and Eq. (2.86). 

The rigid-body rotation is the angle between corotated and initial 

configurations. It can be obtained from the initial length of the element and the total 

displacements, according to Eq. (2.87). However, as explained in Section 4.2.3, in 

a computer implementation, the use of the arctangent function has some limitations. 

Hence, it is more appropriate to calculate the difference between the angles of the 

reference configurations (corotated, β, and initial, β0), in which the corotated 

configuration angle is incremented in small values. Souza (2000) also proposed an 

efficient way of calculating the rigid-body rotation with no limitation to its value. 

1 1n   

 

(2.85) 

2 2n   

 

(2.86) 

2 11

0

0 2 1

tan
y y

x x

d d

L d d


 

     
  

 

(2.87) 

The nodal forces corresponding to the displacement components of the two 

reference systems are shown in Fig. 2.10. 

 

(a)                                                                      (b)  

Figure 2.10 – Force components in (a) global system and (b) natural system 
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The nodal forces in global system (forces fx1, fy1, fx2, fy2, and bending moments 

M1, M2), acting in the same directions of the global displacements, are grouped in 

vector {fg} of Eq. (2.88). In the natural system, three force components are 

generated from the natural displacements, an axial force P, and two bending 

moments, M1 and M2. These components are grouped in vector {fn} of Eq. (2.89).  

   1 1 1 2 2 2

T

g x y x yf f f M f f M

 

(2.88) 

   1 2

T

nf P M M

 

(2.89) 

Using nodal displacements and forces in both reference systems (global and 

natural), the tangent stiffness matrix of the beam element will be derived. The 

tangent matrix relates the displacements and forces of the element degrees-of-

freedom in global system. In fact, due to its nonlinear character, the tangent matrix 

relates displacement increments to force increments, hence the term “tangent”. In 

other words, it involves the variation of these quantities. 

The relation between the variations of the global displacements, {δdg}, and 

global forces, {δfg}, is obtained from the relation between the variations of other 

global and natural quantities, indicated in Fig. 2.11: 

 (1): natural displacements, {δdn}, and natural forces, {δfn}. 

 (2): natural displacements, {δdn}, and global displacements, {δdg}. 

 (3): natural forces, {δfn}, and global forces, {δfg}. 

 

Figure 2.11 – Relations between variations of global and natural quantities 

The next sections are dedicated to the development of these relations for 

obtaining the tangent stiffness matrix of a two-dimensional Euler-Bernoulli beam 

element in the global system (indicated by [k] in Fig. 2.11). 
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2.4.2. Displacements and Forces in Natural System 

Assuming linear-elastic material behavior, Hooke`s law is used to relate 

stresses and strains. The displacements and rotations measured with respect to the 

corotated configuration can be considered small, so engineering strain is used. 

Furthermore, the cross-section area is considered constant (typical assumption for 

small strain problems). Therefore, the axial force is related to the element 

elongation as: 

0

n

EA
P u

L


 

(2.90) 

Similarly, using standard structural analysis results it is possible to show that 

the end moments of the beam are related to the nodal rotations as follows: 

1 1 2

0 0

4 2
n n

EI EI
M

L L
   

 

(2.91) 

2 1 2

0 0

2 4
n n

EI EI
M

L L
   

 

(2.92) 

Equations (2.90), (2.91), and (2.92) can be written in matrix form as in Eq. 

(2.93), where [Cn] is the matrix of linear-elastic stiffness coefficients that relates 

displacements and forces in natural system: 

0

1 0 0 1

0 02 2

0 0

0 4 2

0 2 4

n

n

n

uP EA L

M EI L EI L

EI L EI LM

    
    

     
         

 

(2.93) 

    n n nf C d

 

(2.94) 

Finally, the variation of the natural forces are related to the variation of the 

natural displacements as: 

0
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0 0

0 4 2

0 2 4

n

n

n

uP EA L

M EI L EI L

EI L EI LM

     
    
      
         

 

(2.95) 

    n n nf C d  

 

(2.96) 
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2.4.3. Displacements in Natural and Global Systems 

To find a relation between nodal displacements in natural and global systems, 

consider a small movement (variation δd) from the corotated configuration, as 

shown in Fig. 2.12. In that figure, e1 is the unit vector from first to second node; e2 

is the unit vector orthogonal to e1 (such that the cross product is an out-of-plane 

vector); δun and δα are, respectively, the variations of element elongation and rigid-

body rotation. 

 

Figure 2.12 – Variation from the corotated configuration 

The components of the unit vectors and the movement variation, in the global 

axis system, are: 

 1
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  
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         2
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x x

y y

d d
d

d d

   
   

   

 

(2.97) 

The small movement in the axial direction (variation of element elongation) 

can be determined by the scalar product between the unit axial vector and the 

movement variation, which gives the component of δd projected along the direction 

of e1: 

   1

T

nu e d  

 

(2.98) 

By multiplying these vectors and organizing the terms, the relation between 

the variations of element elongation and global nodal displacements is obtained as 

follows: 
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2 1 2 1cos cos sin sinn x x y yu d d d d        

 

(2.99) 

 

1

1

1

2

2

2

cos sin 0 cos sin 0

x

y

n

x

y

d

d

u
d

d

 
 


 
  

         
 
 
 
  

 

(2.100) 

   
T

n gu r d  

 

(2.101) 

The variation of rigid-body rotation gives, for an infinitesimal angle change, 

an arc-length change of: 

   2

T
L e d  

 

(2.102) 

By developing this equation, the relation between the variations of rigid-body 

rotation and global nodal displacements is obtained as follows: 

 2 1 2 1

1
sin sin cos cosx x y yd d d d

L
         

 

(2.103) 

 

1

1

1

2

2

2

1
sin cos 0 sin cos 0

x

y

x

y

d

d

dL

d

 
 


 
  

         
 
 
 
  

 

(2.104) 

   
1 T

gz d
L

  

 

(2.105) 

The variation of the relative nodal rotations, in which we are interested in, is 

given by the difference between the variations of total nodal rotations and rigid-

body rotation: 

1 1n   

 

(2.106) 

2 2n   

 

(2.107) 
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Expressing the nodal rotations in terms of the vector of global displacements 

and using Eq. (2.105), the previous equations can be rewritten as: 

      1

1
0 0 1 0 0 0

T

n g gd z d
L

    

 

(2.108) 

      2

1
0 0 0 0 0 1

T

n g gd z d
L

    

 

(2.109) 

The relation between variations of relative rotations and global nodal 

displacements is then: 

 

 
 1

2

0 0 1 0 0 0 1

0 0 0 0 0 1

T

n

gT
n

z
d

L z

     
       

        
 

(2.110) 

   1

2

Tn

g

n

A d
 

  
 

 

(2.111) 

Combining Eq. (2.101) and Eq. (2.111) into a single matrix form, we arrive 

at the relation between the variation of natural and global displacements: 

 

 
 1

2

Tn

n gT

n

u
r

d
A

   
 

    
     

 

(2.112) 

     
T

n gd T d  

 

(2.113) 

The matrix [T], whose transpose relates the variation of natural and global 

displacements, is identified in Eq. (2.114).  This transformation matrix is the same 

that relates natural and global forces, and it consists of an expansion and a rotation 

from the natural system to the global system, as seen in the next section. 

 

cos sin sin

sin cos cos

0 1 0

cos sin sin

sin cos cos

0 0 1

L L

L L

T
L L

L L

      
 
   

 
 

  
   

     
 
 

 

(2.114) 
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2.4.4. Forces in Natural and Global Systems 

To relate force components in the natural system to the components of the 

global system, first a relation between forces in natural and local systems will be 

established. Figure 2.13 shows the force components in natural system, in red, and 

the nodal forces in local axis system, in green. 

 

Figure 2.13 – Force components in natural and local systems 

It is clear that the local axial force components, 𝑓𝑥1
′  and 𝑓𝑥2

′ , are related to the 

natural axial force P as: 

1xf P             
2xf P 

 

(2.115) 

Considering a constant shear force along the element and verifying the 

equilibrium of moments at each node, the local transverse force components, 𝑓𝑦1
′  

and 𝑓𝑦2
′ , can be expressed in terms of the end moments as: 

1 2
1y

M M
f

L


            1 2

2y

M M
f

L


  

 

(2.116) 

Using Eq. (2.115) and Eq. (2.116) and noticing that the bending moments are 

common to natural and local systems, the relation between the force components of 

both systems is given in Eq. (2.117). The matrix [B] is identified as an expansion 

matrix from natural to local system. 

1

1

1

1

2

2

2

2

1 0 0

0 1 1

0 1 0

1 0 0

0 1 1

0 0 1

x

y

x

y

f

f L L
P

M
M

f
M

L Lf

M

   
   
           

    
    

      
   

   

 

(2.117) 

    l nf B f

 

(2.118) 
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Now, a relation between nodal forces in local and global systems will be 

established. Figure 2.14 shows the nodal forces in local axis system, in green, and 

in global axis system, in blue. 

 

Figure 2.14 – Force components in local and global systems 

The equilibrium of forces at each node provides the following relations: 

1 1 1cos sinx x yf f f   

 

(2.119) 

1 1 1sin cosy x yf f f   

 

(2.120) 

2 2 2cos sinx x yf f f   

 

(2.121) 

2 2 2sin cosy x yf f f   

 

(2.122) 

Since bending moment components are the same for local and global systems, 

the relation between local and global nodal forces is given in Eq. (2.123). The 

matrix [R] is identified as a rotation matrix from local to global system. 

1 1

1 1

1 1

2 2

2 2

2 2

cos sin 0 0 0 0

sin cos 0 0 0 0

0 0 1 0 0 0

0 0 0 cos sin 0

0 0 0 sin cos 0
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x x

y y
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y y

f f

f f

M M

f f

f f

M M

      
          
       

    
      

      
    

       

 

(2.123) 

    g lf R f

 

(2.124) 
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By substituting Eq. (2.118) into Eq. (2.124), the relation between force 

components in natural and global systems is obtained in Eq. (2.125). The product 

of the rotation matrix [R] by the expansion matrix [B] results in the transformation 

matrix [T], previously given in Eq. (2.114). 

     g nf R B f

 

(2.125) 

    g nf T f

 

(2.126) 

The [T] matrix is the same whose transpose relates the variation of natural 

and global displacements. This corresponds to the Principle of Contragradiency of 

structural analysis. Therefore, the relation of Eq. (2.126) could also be derived from 

the PVD, considering that the work performed by forces going through virtual 

displacements in the global and natural systems is equal. This is seen in Eq. (2.127), 

where virtual work must hold for an arbitrary virtual displacement, which can be 

canceled from the first and last terms of this equation, resulting in Eq. (2.126). 

                   
TT TTT

g g n n g n g nd f d f T d f d T f      

 

(2.127) 

Once the relation between natural and global forces is known, the variation 

of these quantities, in which we are interested, is then obtained by the product rule: 

       g n nf T f T f    

 

(2.128) 

To use this expression, it is necessary to determine the variation of the 

transformation matrix, [δT]. The variation of each column of the transformation 

matrix will be obtained separately. For the first column, {T1}, the variation is 

developed as follows: 

   1 cos sin 0 cos sin 0
T

T        

 

(2.129) 

   1 sin cos 0 sin cos 0
T

T        

 

(2.130) 

   1T z  

 

(2.131) 

Observing that δβ = δα and using Eq. (2.105), the variation of the first column 

of the transformation matrix is: 

      1

1 T

gT z z d
L

  

 

(2.132) 
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The second and third columns, {T2} and {T3}, can be written as: 

     2

1
0 0 1 0 0 0

T
T z

L
  

 

(2.133) 

     3

1
0 0 0 0 0 1

T
T z

L
  

 

(2.134) 

The variation of the constant vectors in these equations is zero, so the 

variation of the second and third columns is equal. Using the product rule: 

         2 3

1 1 1
T T z z z

L L L

     
                

     

 

(2.135) 

In the previous expression, it is necessary to find δ(-1/L) and {δz}. The former 

is developed using the chain rule: 

 1 2

2

1 L
L L L

L L

   
         
 

 

(2.136) 

Since δL = δL0 + δun and δL0 = 0, and using Eq. (2.101) to express δun, the 

following result is obtained: 

   2 2

1 1 Tn
g

u
r d

L L L

 
     
 

 

(2.137) 

To find {δz}, it should be noted again that δβ = δα, and Eq. (2.105) is used to 

express δα: 

   sin cos 0 sin cos 0
T

z        

 

(2.138) 

   cos sin 0 cos sin 0
T

z        

 

(2.139) 

        
1 T

gz r r z d
L

      

 

(2.140) 

Replacing Eq. (2.137) and Eq. (2.140) into Eq. (2.135), the following 

expression is obtained for the variation of the second and third columns of the 

transformation matrix: 

           2 3 2

1 T T

gT T z r r z d
L

     

 

(2.141) 

Now that the variation of the transformation matrix is determined, the relation 

between the variation of natural and global forces, given in Eq. (2.128), is 

completely defined. 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



75 

 

2.4.5. Tangent Stiffness Matrix in Global System 

All the necessary relations between global and natural quantities have been 

established in the previous sections in order to develop a variationally consistent 

tangent stiffness matrix in the global system. These relations are illustrated in Fig. 

2.15, where the bold equation indicates the unknown relation that is being sought. 

This unknown relation is provided by the tangent matrix, which can be defined as 

the differentiation of internal global forces with respect to global displacements 

 

Figure 2.15 – Established relations between the variations of global and natural quantities 

Equation (2.128), at the bottom of Fig. 2.15, is rewritten by separating the 

columns of [δT]: 

          1 1 2 2 3g nf T f P T M T M T        

 

(2.142) 

Equation (2.96), on the right side of Fig. 2.15, is used to replace the natural 

forces in the previous expression. In addition, Eq. (2.132) and Eq. (2.141) are used 

to express the variation of the transformation matrix columns in terms of the 

variation of global displacements. The result is: 

     

            1 2

2

g n n

T T T

g g

f T C d

M MP
z z d z r r z d

L L

   


   

 

(2.143) 

Equation (2.113), at the top of Fig. 2.15, is used to replace the variation of 

natural displacements in the first term on the right hand side of the previous 

expression: 

       

            1 2

2

T

g n g

T T T

g g

f T C T d

M MP
z z d z r r z d

L L

   


   

 

(2.144) 
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Observing that {δdg} is a common factor, the relation between variations of 

global forces and global displacements is finally obtained: 

                 1 2

2

T T T T

g n g

M MP
f T C T z z z r r z d

L L

 
      

 

 

(2.145) 

where the tangent stiffness matrix is identified as: 

               1 2

2

T T T T

n

M MP
k T C T z z z r r z

L L


   

 

(2.146) 

This expression provides the tangent matrix of a beam element already in the 

global axis system. It does not need to be rotated before it is inserted into the global 

system matrix. The result of multiplying all terms of the tangent matrix expression 

is: 

 
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 
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

 

(2.147) 

It is interesting to notice that, in Eq. (2.146), the first term, which depends on 

the matrix of linear-elastic stiffness coefficients [Cn], corresponds to the elastic 

stiffness matrix. The remaining terms, which depend on element forces, originate 

the geometric stiffness matrix. Considering a beam element aligned with the global 

axes (β = 0), i.e., accounting only for the expansion from natural to local system, 

the result for the elastic and geometric stiffness matrices are respectively: 
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 
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(2.148) 

 
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(2.149) 
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3. Solution Methods 

3.1. Introduction 

In the previous chapter, the local stiffness matrices of plane beam elements, 

subjected to large displacements and large rotations, were deduced. These matrices 

include elastic and geometric stiffness coefficients, to compose the tangent matrix 

of the element, which relates the displacements and forces acting on nodal degrees-

of-freedom. The global tangent matrix of the model is assembled by a usual direct 

stiffness process, adding the stiffness coefficients of each local matrix to the 

corresponding degree-of-freedom of the global matrix, as well as in a linear 

analysis. However, in this case, a system of nonlinear equilibrium equations is 

obtained to account for the deformed geometry of the structure. 

The system nonlinearity lies in the fact that the evaluation of the tangent 

stiffness matrix, at any equilibrium configuration, depends on the deformed 

geometry of the structure and the internal forces of the elements. Such properties 

are obtained from the nodal displacements, which are the unknowns of the problem. 

Therefore, it is not possible to solve the system of equilibrium equations 

analytically, and it needs to be treated numerically. 

In addition to a consistent and well-developed nonlinear formulation, a well-

implemented solver for the system of equilibrium equations is equally important 

for obtaining the correct answers to the structural problem. At first, iterative 

methods for solving systems of nonlinear equations, such as the Newton-Raphson 

method, could be applied to find the displacements corresponding to the externally 

applied loads. This is because, considering only the geometric nonlinearity, the 

equilibrium configuration corresponding to a given load level does not depend on 

the history of the structure response. 

However, directly calculating total displacements from the total applied loads 

is not a good practice. Firstly, there is no prior guarantee that the structure will 

withstand the applied loads, and may present critical points in the solution 

associated with instability phenomena, which would not be detected in a direct 
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analysis. Besides that, iterative algorithms for solving nonlinear systems need an 

initial solution (initial equilibrium configuration) close to the final answer to be able 

to converge correctly, without numerical instability problems. Therefore, even for 

an analysis without dependence on the history of equilibrium configurations, the 

numerical approach must be such that it is possible to follow the equilibrium path 

of the structure to the desired load. 

The practical way to solve the nonlinear system of equations and follow the 

equilibrium path is by an incremental analysis. This methodology consists of 

applying the total load in a series of increments for which the corresponding 

displacement increments are obtained by direct or iterative solution of an 

incremental linear system. Thus, a step linearization is performed, approximating 

the nonlinear relation between applied loads and nodal displacements through one 

or several linear analyzes in each step. 

This chapter presents two categories of incremental methods for solving the 

nonlinear equilibrium system. The first is the purely incremental, or single-step, 

methods in which a single stiffness matrix is used to represent the load-

displacement relation in each analysis step. The second is the incremental-iterative 

methods, which perform various linear analyzes to iteratively solve the incremental 

system at each step, in order to converge to the equilibrium solution within a 

numerical tolerance. A quick review of concepts about equilibrium paths, critical 

points and stability is provided first. These concepts are important to the rest of the 

chapter. 

3.2. Equilibrium Path, Critical Points, and Stability 

The equilibrium path of a structural model is the graphical representation of 

the solutions of the equilibrium system, for various levels of the applied loads (or 

other external solicitations). Normally, the plotted curve gives the value of a 

representative displacement of the model, associated with one of its degrees-of-

freedom, versus a load factor. The representative displacement of a model depends 

on the study to be performed. This displacement should be able to capture the 

phenomenon of interest and its choice involves the analyst's prior knowledge of the 

structural behavior. By studying the equilibrium path, many aspects of the nonlinear 

response of the structure can be evaluated. 
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In a linear analysis, the equilibrium path is a straight line with no load limit. 

On the other hand, nonlinear formulations provide paths that can be complex curves 

with critical points and multiple responses to a given load level, or even no real 

response, since nonlinear equations have multiple roots in the complex domain. The 

curve that passes through the initial configuration of the analysis (the origin of the 

diagram) is called the fundamental, or primary, path. This path extends to the so-

called critical points, where it connects with secondary, or post-critic, paths. Most 

structures are designed to work on the fundamental path. However, the study of the 

complete post-critic solution is important to determine how the structure behaves 

in emergency situations, and to assess its stability conditions. 

Analyzing only the equilibrium of a structure is not sufficient for a safe 

project because an equilibrium configuration can be stable or unstable. Instability 

phenomena generate sudden changes in geometry and in the distribution of internal 

forces that can lead to catastrophic failures. Therefore, stability criteria should often 

be used, in addition to strength criteria, especially for slender elements where 

instability may occur in the linear-elastic regime. The study of the stability of 

structures is closely linked with the characteristics presented by their equilibrium 

paths. It is possible to identify, for example, the sign of the effective stiffness 

(tangent of the curve) in different equilibrium configurations, which may indicate 

the stability condition. A negative stiffness is necessarily associated with an 

unstable equilibrium configuration, while a positive stiffness is necessary, but not 

sufficient, for a stable equilibrium. Details on stability criteria are beyond the scope 

of this work. References for this subject are the books of Bazant & Cedolin (2010), 

Timoshenko & Gere (2009), and Thompson & Hunt (1973). 

The equilibrium configuration where the structure loses stability is 

characterized by some type of critical point. In analyzes with geometric 

nonlinearity, the types of critical point that may arise in the equilibrium path are 

load limit points and bifurcation points. Displacement limit points should also 

receive some attention, although they are not associated with stability conditions. 

Figure 3.1 shows some examples of limit point occurrences. 
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Figure 3.1 – Types of limit points 

Load limit points are those at which a system's capacity for resistance to 

additional load is exhausted and continued deformation results in a decrease in load-

resisting capacity (McGuire et al., 2000). Graphically this means a local maximum 

or minimum of the curve, where the tangent at the point is horizontal (parallel to 

the axis of displacement). Numerically, these points are characterized by the 

singularity of the tangent stiffness matrix. Although a zero-stiffness limit point is 

rarely encountered in the incremental methods commonly employed, the approach 

to it indicates that the numerical accuracy of the solution may diminish in the 

neighborhood of a limit point because of ill-conditioning. Special solution 

techniques are required to detect and pass through a load limit point for continuing 

the analysis into the post-critic region. 

The physical phenomenon associated with load limit points is called snap-

through. This phenomenon occurs when the structure undergoes a load increase 

until, upon reaching the limit point, a dynamic jump occurs to seek another 

equilibrium position, in a process that releases the internal energy of deformation 

as kinetic energy. The response between the maximum and minimum load limit 

points has a negative stiffness and thus is an unstable region. This behavior is 

usually presented by shallow structures, such as arches and membranes, where 

concavity inversion occurs. 
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Displacement limit points, also known as turning points or snap-back points, 

are not considered as a critical point but have implications for the numerical 

solution of the path trace. Equilibrium stability after displacement limit points is 

not necessarily changed. These points do not have much physical meaning. They 

are graphically identified by vertical tangents of the curve (parallel to the load axis). 

Critical points of bifurcation occur at the intersection between two or more 

equilibrium paths, belonging to different paths. The path followed by the structure 

is the one with the lowest energy required. The physical phenomenon associated 

with this type of critical point is called buckling, and commonly occurs in slender 

structures under compression loads. However, the occurrence of ideal bifurcation 

points is rare in real structural systems, as the inevitable imperfections of geometry, 

load application, and materials make the crossing of paths impossible to occur, and 

only one of them is followed. The detection of bifurcation points is not treated in 

this work, but it is well explored in Crisfield (1997) and Teh & Clarke (1999). 

3.3. Incremental System of Equilibrium Equations 

To trace the equilibrium path, the nonlinear system of equations must be 

solved several times, in an incremental fashion. The nonlinear solution is 

approximated by linear responses at each increment. The linear approximation 

generates a residue between the linearized solution and the real nonlinear solution. 

This residue may, or may not, be corrected by iterative techniques, depending on 

the solution method selected for the analysis. The following sections aim to present 

the methodology of incremental solution of the nonlinear system of equilibrium 

equations. The methods implemented in the developed tool are detailed. 

Throughout this chapter, the configuration corresponding to the incremental 

step i-1 is the last obtained equilibrium configuration, while the one corresponding 

to step i is the current configuration, still unknown, in which equilibrium is being 

sought. The symbol Δ is used to indicate the increments of the variables in each 

step, while the symbol δ is used here as the indication of the increments in each 

iteration. Furthermore, vector and matrix variables are written in bold, and scalar 

product is represented by a dot. All vectors and matrices correspond to the global 

structure arrays, assembled with the local arrays of each element. 
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3.3.1. Incremental Solution 

Common to any kinematic description used to formulate the nonlinear 

structural problem is that the system of nonlinear equations, which defines the 

global equilibrium state, considering a finite element discretization, is given by the 

balance of internal and external forces at nodal points. This balance is expressed as 

in Eq. (3.1), where F is the vector of internal nodal forces, which is a function of 

the nodal displacements vector, U, and P is the vector of external nodal forces 

applied to the structure, which is a function of a load factor, λ. Equation (3.2) shows 

how the vector of external nodal forces is expressed as the product of a load factor 

by a vector of reference loads, P . In this work, the reference loads are taken as the 

total external forces, proportionally applied to the nodal degrees-of-freedom, i.e., 

all components of the vector of external forces are increased or decreased by the 

same ratio. Therefore, the load factor is interpreted as a ratio of the externally 

applied forces, being referred to as load ratio. 

    F U P  (3.1) 

 P P

 

(3.2) 

Both force vectors in Eq. (3.1) are developed using the Principle of Virtual 

Displacements, a kinematic description, and the FEM to discretize each element 

displacement and rotation fields. 

The solution of the equilibrium system in Eq. (3.1) is obtained incrementally. 

For a sequence of external load increments, given by increments of the load ratio, 

Δλi, the corresponding increments of nodal displacements, ΔUi, are calculated by 

linearizing the problem, where subscript i indicates the i-th analysis step. The total 

external forces and nodal displacements of the current (desired) configuration  

(step i) are then computed by adding the incremental updates to the previous 

(known) configuration (step i-1): 

 1i i i   P P  (3.3) 

1i i i U U U

 

(3.4) 

Therefore, starting from a known equilibrium configuration, the next 

equilibrium state is sought by the balance of internal and external forces, which are 

incrementally increased: 
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 i iF U P  (3.5) 

   1 1i i i i      F U U P

 

(3.6) 

   1 1i i i i      F U P P F U

 

(3.7) 

Notice that, as a result of linearization, it was possible to write F(Ui-1 + ΔUi) 

= F(Ui-1) + F(ΔUi). Moreover, as the structure was in equilibrium in the previous 

configuration (Pi-1 – F(Ui-1) = 0), the incremental system of equilibrium equations 

is: 

 i i  F U P  (3.8) 

The tangent stiffness matrix, K, is defined in Eq. (3.9), as the derivatives of 

internal forces with respect to nodal displacements evaluated at the previous known 

configuration. Thus, the internal forces can be written as in Eq. (3.10), and the 

incremental system to solve for displacement increments is given in Eq. (3.11). 

1i



 U

F
K

U

 

(3.9) 

  1i i i  F U K U

 

(3.10) 

1i i i   K U P

 

(3.11) 

The tangent matrix of a beam element was developed in Chapter 2 using the 

Principle of Virtual Displacements, a kinematic description (Updated Lagrangian 

or Corotational), and the Finite Element Method to discretize each element 

displacement field. The global system matrix is then assembled by a Direct Stiffness 

procedure. If the formulation is consistent, this matrix represents the derivatives of 

the internal forces with respect to nodal displacements (tangent of the solution). 

However, since the internal forces are a nonlinear function of the displacements, 

the solution of the linearized incremental system of Eq. (3.11) does not satisfy the 

equilibrium. A vector of residual forces arises as a result of the unbalance between 

external and internal forces. An iterative process is often employed within each 

increment to ensure the equilibrium by eliminating the residual forces. 

It should be mentioned that the evaluation of the tangent stiffness matrix and 

the vector of internal forces, at any configuration, is done in distinct ways 

depending on the formulation of the problem. Details on this process, for the UL 

and CR formulations implemented in this work, are left for Chapter 4. 
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3.3.2. Incremental-Iterative System 

Considering that the structure was in equilibrium at step i-1, it is desired to 

achieve equilibrium in the i-th step. Therefore, it is necessary to nullify the residual 

forces originated from the linearized increment. This is done by performing 

corrective iterations of the Newton-Raphson type within each incremental step until 

a convergence criterion is satisfied, and a new equilibrium state is established. 

In each iteration, indicated by subscript j = 1,2,3…, increments of load ratio, 

δλi
j, and nodal displacements, δUi

j, are obtained. These iterative increments 

represent a correction of the load and displacement values in the respective step. 

Therefore, after the the j-th iteration, the total increments of the i-th step are updated 

by accumulating the iterative increments: 

1j j j

i i i

     (3.12) 

1j j j

i i i

   U U U

 

(3.13) 

The total values of the load ratio and nodal displacements for the entire 

analysis are updated as follows: 

1

j j

i i i     (3.14) 

1

j j

i i i U U U

 

(3.15) 

Equation (3.16) brings the residual force vector after the j-th iteration, given 

by the difference between the total values of external and internal nodal forces. 

 j j j

i i i  R P F U

 

(3.16) 

Assuming that, in the iterative solution, we have evaluated Ui
j-1 and the 

iterative increments are sufficiently small, the residual forces can be obtained by a 

Taylor series expansion up to the first derivatives about the conditions at step i, 

iteration j-1: 

1 1

1 higher order terms
j j

i i

j j j j

i i i i
 

  
     

 U U

R R
R R U

U

 

(3.17) 

Notice that, considering the externally applied forces to be independent of 

displacements, the derivatives of the residual forces with respect to nodal 

displacements result in the tangent stiffness matrix (with negative sign). Similarly, 

the derivatives of the residual forces with respect to the load ratio result in the 

reference load vector: 
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1j

i



 


 U

R P

U U 1
1

1

j
j

i
i

j

i





  

     
   UU

F F
K

U U

 

(3.18) 

1j

i



  
 

  U

R P F

1
1

j
j

i
i




  
  
  UU

P
P

 

(3.19) 

Using Eq. (3.18) and Eq. (3.19) in Eq. (3.17), considering the residual forces 

in the current iteration to be null (Ri
j = 0), as it is desired, and neglecting higher 

order terms, it is possible to obtain the governing incremental-iterative system of 

finite element equations to be solved in the j-th iteration of the i-th step, to achieve 

equilibrium by means of the Newton-Raphson iteration scheme. The resulting 

system to compute the iterative increments of displacements is given in Eq. (3.20), 

whereas the improved, or corrected, displacements solution is given in Eq. (3.21). 

These equations were obtained by linearizing the response of the finite element 

system about the conditions at step i, iteration j-1, by means of a Taylor series 

expansion. The residual forces are calculated according to Eq. (3.16). 

1 1j j j j

i i i i

    K U P R

 

(3.20) 

1j j j

i i i

 U U U

 

(3.21) 

The initial conditions to start the iterative process of the i-th incremental step 

are the results obtained at the end of the previous step: 

0

1i i    (3.22) 

0

1i iU U

 

(3.23) 

The Newton-Raphson iteration scheme is the most frequently used for the 

solution of nonlinear finite element equations because of its convergence properties, 

as presented by Bertsekas (1982). An important property of this scheme is that if 

the current iterative solution is sufficiently close to the real solution, if the exact 

tangent stiffness matrix is used in the iterations (evaluated consistently with Eq. 

(3.9)), and if the tangent matrix does not change abruptly, we can expect a quadratic 

convergence (Bathe, 1996). This means that if the error after iteration j is of order 

e, then the error after iteration j+1 will be of order e². On the other hand, if these 

conditions are not satisfied, then the iteration may diverge. The primary procedure 

for reaching convergence, if convergence difficulties are encountered, is to decrease 

the magnitude of the load step. 
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In the standard Newton-Raphson iteration scheme, the tangent stiffness 

matrix is updated in all iterations, considering the last obtained geometric 

configuration, Ui
j-1, and internal forces, F(Ui

j-1). However, in general, the major 

computational cost per iteration lies in the calculation and factorization of the 

tangent stiffness matrix. Since these calculations can be quite expensive when 

large-order systems are considered, the use of a modification of the Newton-

Raphson algorithm can be effective. In the modified Newton-Raphson iteration 

scheme, the tangent matrix is only evaluated at the beginning of each incremental 

step and held constant for all subsequent iterations, i.e., Ki
j-1 = Ki

1 for j > 1. 

The modified scheme has a lower computational cost at each iteration than 

the standard version, but convergence is usually slower because it typically requires 

more iterations in each incremental step. However, the additional effort of the extra 

iterations performed by the modified scheme is often offset by the substantial 

savings realized as a result of not having to assemble and decompose a new tangent 

stiffness matrix in all iterations. The use of the modified scheme to update the 

tangent matrix may result in convergence problems in the analysis of structures that 

exhibit significant stiffening behavior as a result of large internal tensile forces 

(McGuire et al., 2000). 

The overall behavior of the two types of Newton-Raphson iteration schemes 

is illustrated in Fig. 3.2 for a single degree-of-freedom, where point A is the start of 

the incremental step and point B is the converged equilibrium solution. 

  

Figure 3.2 – Versions of the Newton-Raphson iteration scheme (adapted from Leon et al., 2011) 

 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



88 

 

3.3.3. Augmented Incremental-Iterative System 

The linearized system of Eq. (3.20) has N+1 unknowns: N components of 

displacement increment in δUi
j and one load ratio increment δλi

j; but only N 

equations. It is necessary to add a constraint equation to that system. The general 

form of this additional equation is given in Eq. (3.24), where vector A and scalars 

B and C are constants that can assume different values depending on the solution 

method to which this equation is associated (Yang & Kuo, 1994). 

j j j j j

i i i i iB C   A U

 

(3.24) 

The governing system of Eq. (3.20) and the constraint equation of Eq. (3.24) 

yield an augmented system of N+1 equations and unknowns: 

 

1 1j j j
i i i

T j jj j

i ii i
CB

         
     
         

K P U R

A

 

(3.25) 

The augmented system matrix is no longer symmetric and has an increased 

bandwidth due to the added load ratio. The solution of this system would be 

computationally undesirable with respect to both storage and efficiency. However, 

Batoz & Dhatt (1979) presented a technique to overcome this problem by 

decomposing the system into two systems that use the original matrix, so the banded 

and symmetric properties of the original system remain intact: 

1

1 1

j j

i i

j j j

i i i



 

  


 

K U P

K U R

 

(3.26) 

The solution for the iterative increment of displacements is the linear 

combination of a tangent, j

iU , and a residual, j

iU , increment: 

j j j j

i i i i    U U U

 

(3.27) 

The unknown iterative increment of load ratio is given by the constraint 

equation, which is associated with a particular nonlinear solution method that gives 

rise to the constraint coefficients A, B, and C of Eq. (3.24). Replacing Eq. (3.27) 

into Eq. (3.24), one can notice, in Eq. (3.28), that the constraint equation is also a 

function of the tangent and residual components of the iterative increment of 

displacements. Therefore, the linear systems of Eq. (3.26) must be solved prior to 

computing the iterative increment of load ratio. 
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j j j
j i i i
i j j j

i i i

C

B

 
 

 

A U

A U

 

(3.28) 

It is also important to mention that the addition of the constraint equation to 

the system permits an adjustment of both the displacements and the load ratio 

during the iterative cycle and, therefore, allows the algorithms to advance in the 

solution beyond load limit and displacement limit points. 

The incremental-iterative solution process is summarized with Equations 

(3.26), (3.28), and (3.27) to calculate the iterative increments of load ratio and nodal 

displacements. Equations (3.12) to (3.15) are used to update the iterative results 

with Equations (3.22) and (3.23) as initial conditions for the incremental step. 

Finally, the residual forces are calculated using Eq. (3.16). Table 3.1 organizes these 

important equations. 

Table 3.1 – Summary of equations for solving the incremental-iterative system 

Tangent and residual increments 

1j j

i i

  K U P  

1 1j j j

i i i

  K U R  

Iterative increments 

   j j j j j j j

i i i i i i iC B     A U A U  

j j j j

i i i i    U U U  

Step increments 

1j j j

i i i

     

1j j j

i i i

   U U U  

Total values 
1

j j

i i i     

1

j j

i i i U U U  

Residual forces  j j j

i i i  R P F U  

The incremental single-step solution process, in turn, works only with the 

purely incremental system of Eq. (3.11), as explained in Section 3.5.1. 
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The process of solving the purely incremental or the incremental-iterative 

system can be split into two phases within each step, called predictor phase and 

corrector phase. For the methods with iterative solutions, the predictor phase is 

equivalent to the first iteration, and the remaining iterations correspond to the 

corrector phase. This is an alternative way of presenting and implementing the 

solution process, rather than performing all iteration in the same loop. The 

advantage is to make explicit the role of each phase and to combine different 

increment strategies with correction strategies. For purely incremental methods, this 

division makes no difference. 

Details of the strategies that can be adopted in each solution phase, for both 

incremental single-step and incremental-iterative methods, are described in the 

following sections. In Section 3.6, a summary is presented with a flow-chart of all 

the general steps to solve the nonlinear problem by the mentioned classes of 

incremental methods. The reader is encouraged to take a look at Fig. 3.15 before 

proceeding. 

3.4. Predicted Solution 

In each incremental step, the predictor phase is executed first. The purpose is 

to calculate a predicted solution with a single linear analysis that uses the tangent 

stiffness matrix evaluated at the beginning of the step. 

This phase, for the i-th incremental step, starts with the evaluation of the 

tangent stiffness matrix, Ki
0, based on the results obtained at the end of the previous 

step (nodal displacements, Ui-1, and internal forces, F(Ui-1)). The tangent increment 

of displacements, j

iU , is then calculated with a linear analysis, according to the 

first line of Eq. (3.26). The residual increment of displacements in this phase is null 

( j

i  0U ), because residual forces coming from the previous step are disregarded. 

The predicted increment of displacements, δUi
1, is obtained according to Eq. (3.27), 

but only with the product of the tangent increment of displacements by an increment 

of load ratio ( j j j

i i i   U U ). This load ratio increment is computed with a 

constraint equation that defines a hyper-surface to restrict the corrective solutions 

of the incremental-iterative methods. Figure 3.3 illustrates a schematic of the 

predictor phase for a single degree-of-freedom system. 
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Figure 3.3 – Schematic of the predictor phase 

Obtaining the predicted solution has as fundamental task the calculation of 

the predicted increment of load ratio. In the first incremental step of the analysis    

(i = 1), the predicted increment of load ratio must be a prescribed value by the 

analyst. According to McGuire et al. (2000), this value should normally be about 

10% to 20% of the maximum applied load. In the remaining steps (i > 1), it is 

computed according to the constraint equation of the selected strategy. 

The size of the predicted increment of load ratio employed in each step of the 

analysis can have a dramatic effect on the solution. In the single-step methods, 

proper selection of this increment is the only means for controlling drift-off error. 

In the incremental-iterative methods, a poor definition of this value could result in 

convergence problems. In both methods, an excessively small increment may result 

in significant computational effort with a negligible increase in accuracy. 

Therefore, a good algorithm must be able to automatically adjust the size of 

the predicted increment, according to the degree of nonlinearity of the system. This 

automatic adjustment should provide large increments when the response is almost 

linear, in order to reduce the computational cost, and lead to small increments when 

the response is strongly nonlinear, so drift-off error is reduced or the iterative cycle 

can converge to a new equilibrium configuration. 
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The option of whether or not to use the automatic adjustment of the load ratio 

increment is usually available on computer programs, as in the case of the 

developed tool. However, it is recommended that the option to automatically adjust 

the increment be selected. Thus, the increments of all steps do not depend only on 

the value provided for the first step, which can be a bad value if the user does not 

know what to expect from the behavior of the structure. 

In addition, when the solution passes a load limit point and reaches an 

unstable equilibrium configuration, the load increment necessary to continuing 

tracing the equilibrium path must be a negative value, for a positive increment of 

displacement. Hence, the algorithm must also be able to choose the correct sign for 

the increment, allowing continuation methods to go beyond load limit points. 

The strategies for calculating the value of the predicted increment of load ratio 

and choosing the correct sign of this increment are presented in the next sections. 

3.4.1. Increment Strategies 

Two classes of strategy to compute the predicted increment are usually found 

in the literature of nonlinear analysis of structures. Each one has a different way of 

adjusting the size of the increment to account for the system nonlinearity. One is 

based on the number of performed iterations and the other is based on the stiffness 

of the system. Both of them are presented next. 

3.4.1.1. Strategies Based on the Number of Iterations 

The idea of these strategies starts by setting the increment of a control 

parameter, φ, as the same value of the increment of this parameter in the previous 

step, according to Eq. (3.29). The selection of the control parameter is what 

distinguishes the strategies. The most common parameters are the load ratio, the 

external work, and an arc-length. 

1 1

1i i  

 

(3.29) 

The corresponding increment of load ratio, necessary to provide the 

prescribed increment of the control parameter, is then computed. Thus, when the 

control parameter is not the load ratio itself, a coefficient, H, is necessary to convert 

the increment of the control parameter to the increment of load ratio. The constraint 

equation becomes: 
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1 1

1i iH   

 

(3.30) 

The load ratio increment is adjusted by selecting the correct sign and 

multiplying it by an adjustment factor that measures the degree of nonlinearity of 

the system based on the number of performed iterations. The general form of the 

expression for obtaining the predicted increment of load ratio in the i-th step, for     

i > 1, is given in Eq. (3.31), where J is the adjustment factor of the increment size 

and the correct sign is selected according to the criterion presented in Section 3.4.2. 

1 1

1i iJ H    

 

(3.31) 

The adjustment factor of these strategies, as introduced by Ramm (1981), is 

given in Eq. (3.32). In that expression, Ni and Ni-1 are, respectively, the desired 

number of iterations for the current step, which is a user input data, and the number 

of iterations required to achieve convergence in the previous step. The exponential 

variable η typically ranges from 0.5 to 1.0, but the lower value is usually employed, 

as suggested by Ramm (1982) and Krenk (2009). 

1

i

i

N
J

N





 
  
 

 

(3.32) 

In the next sections, the formulation of each increment strategy is developed, 

to arrive at the expressions for the converting factor H of the corresponding control 

parameter, and determine the predicted increment of the load ratio. 

Some remarks should be made: 

 Since these strategies depend on the number of iterations to measure 

the degree of nonlinearity of the systems, they are only applicable to 

incremental-iterative solution methods. 

 The constraint equation, defined by the increment of the control 

parameter, is used in the iterative corrections of some incremental-

iterative methods to keep this increment constant during the entire 

step. Therefore, in this case, the increment of the control parameter to 

reach the predicted solution is the same increment of the end of the 

step, and Eq. (3.29) could be expressed as a function of the total 

increment of the previous step: 

1

1i i  

 

(3.33) 
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 However, in some iterative strategies, the predicted increment of the 

control parameter is not kept constant throughout the step. The Linear 

Arc-Length, Minimum Norm, and Orthogonal Residue control 

methods are some examples. In these cases, the value of the increment 

of the control parameter at the end of the iterative cycle is different 

from the predicted value. Therefore, the constraint equation developed 

in terms of the total increments of the previous step, according to Eq. 

(3.33), should be applied for the prediction of the load ratio increment 

in the iterative strategies that do not preserve the increment of the 

control parameter. 

 Furthermore, the constraint equation in terms of the total incremental 

values of the previous step is easier to implement, since these are 

information that are naturally stored to update the results. In contrast, 

the information about the predicted solution of the previous step 

would have to be stored just for computing the constraint equation by 

means of Eq. (3.29). Both expressions for the constraint equation, 

developed according to Eq. (3.29) and Eq. (3.33), are presented in the 

next sections. 

 As previously commented, in the first step of the analysis the 

predicted increment of load ratio is a prescribed value by the analyst. 

The reason for requiring the increment of the load ratio, and not the 

increment of the control parameter of the selected strategy, is that a 

user has a much better sense of the load increment to be taken than of 

a more abstract parameter such as an external work or an arc-length. 

 In the implemented algorithm, a check is made to verify if the 

predicted increment results in a total load ratio greater than the 

prescribed maximum value for the analysis. In this case, the load ratio 

increment is limited to the difference between the maximum value and 

the total load ratio from the previous step (δλi
1 = λmax - λi-1). 
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3.4.1.1.1. Load Increment 

In this strategy, the predicted increment of load ratio is directly obtained from 

the previous step, so the constraint equation of Eq. (3.30) is used with unit value 

assigned to the coefficient H. Notice that this constraint equation corresponds to 

assuming the values given in Eq. (3.35) to the constraint coefficients of Eq. (3.28). 

1 1

1i i    (3.34) 

1

i  0A      ,     
1 1iB       ,     

1 1

1i iC  

 

(3.35) 

By applying the correct sign and the size adjustment factor: 

1 1

1i iJ    

 

(3.36) 

This increment strategy is appropriate to be used by the Load Control Method 

(Section 3.5.2.1), with the purpose to keep the predicted increment of load ratio 

constant after each iteration. Alternatively, the total increment of load ratio of the 

previous step could be employed: 

1

1i iJ    

 

(3.37) 

3.4.1.1.2. External Work Increment 

The control parameter to be incremented in this strategy is the external work, 

W, applied to the system. Equation (3.29) becomes: 

1 1

1i iW W   

 

(3.38) 

The work increment to obtain the predicted solution can be expressed by the 

product of the increment of external forces by the increment of displacements: 

1 1 1

i i iW   P U

 

(3.39) 

Equation (3.27) is substituted into δUi
1, with residual increments being zero, 

which results in: 

 
2

1 1 1

i i iW   P U

 

(3.40) 

The increment of external work of the previous step is similarly defined as: 

 
2

1 1 1

1 1 1i i iW      P U

 

(3.41) 
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Therefore, the constraint equation to find the increment of load ratio 

corresponding to the increment of external work can be obtained as follows: 

   
2 2

1 1 1 1

1 1i i i i     P U P U  (3.42) 

1
1 1 1

1 1

i
i i

i





   



P U

P U

 

(3.43) 

The constraint coefficients employed in Eq. (3.28) to arrive at the same 

constraint equation are: 

1 1

i i A P      ,     
1 0iB       ,     

1 1

1i iC W  

 

(3.44) 

The adjusted increment of load ratio is obtained by imposing the adjustment 

factor J to Eq. (3.43): 

1
1 1 1

1 1

i
i i

i

J 



   



P U

P U

 

(3.45) 

where the coefficient H can be identified as: 

1

1

1

i

i

H 




P U

P U

 

(3.46) 

When the first step (i = 1) is taken as the reference for adjusting the increment 

of external work, this coefficient is known as the Current Stiffness Parameter 

(CSP), and this work-based strategy is interpreted as a stiffness-based strategy, 

described in Section 3.4.1.2.1. 

The External Work Increment strategy should be used together with the Work 

Control Method of iterative corrections (Section 3.5.2.2) to maintain the same work 

increment during the entire step. In this case, the total increment of external work 

of the previous step could also be used to develop the constraint equation, according 

to Eq. (3.33). The result is: 

1 1 1

1

i i
i

i

J   
  



P U

P U

 

(3.47) 

Some weaknesses of the External Work Increment strategy have been 

examined by Yang & Shieh (1990). For structures with a small number of degrees-

of-freedom, and which the major forcing directions present a snap-back behavior, 

the denominator of Eq. (3.46) tends to zero, forcing the increment to infinity. For 

this reason, this strategy has limited success when facing displacement limit points. 
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3.4.1.1.3. Arc-Length Increment 

This strategy considers an arc-length, L, as the control parameter to be 

incremented: 

1 1

1i iL L   

 

(3.48) 

The arc-length is calculated via a norm of the predicted increment: 

  
1

2 21 1 1 1

i i i iL      U U P P

 

(3.49) 

where β is a non-negative real parameter that defines different versions of the 

arc-length measurement: cylindrical arc-length (β = 0), spherical arc-length (β = 1), 

and elliptical arc-length (0 < β < 1). Only the cylindrical and spherical versions 

were implemented. 

Using Eq. (3.27), with residual increments being zero, the arc-length 

increment is expressed as function of the tangent increment of displacements: 

    
1

2 2 21 1 1 1 1

i i i i iL       U U P P

 

(3.50) 

 
1

1 1 1 1 2

i i i iL      U U P P

 

(3.51) 

The arc-length increment of the previous step is expressed in the same way: 

 
1

1 1 1 1 2

1 1 1 1i i i iL          U U P P

 

(3.52) 

Therefore, the constraint equation is obtained as follows: 

   
1 1

1 1 1 1 1 12 2

1 1 1i i i i i i            U U P P U U P P

 

(3.53) 

1 1
1 1 1 1

1 1 1

i i
i i

i i

 


   
  

   

U U P P

U U P P

 

(3.54) 

where the coefficient H can be identified as: 

1 1

1 1

1 1

i i

i i

H     


   

U U P P

U U P P

 

(3.55) 

This constraint equation is equivalent to assuming the following values for 

the constraint coefficients of Eq. (3.28): 

1 1 1

i i i  A U      ,     
1 1

i iB        ,      
2

1 1

1i iC L  

 

(3.56) 
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With the introduction of the adjustment factor and the appropriate sign, the 

results for the cylindrical and spherical versions of the arc-length increment are 

respectively: 

1 1
1 1 1 1

1 1 1

i i
i i

i i

J  


 
   

 

U U

U U

 

(3.57) 

1 1
1 1 1 1

1 1 1

i i
i i

i i

J  


   
   

   

U U P P

U U P P

 

(3.58) 

Alternatively, the constraint equation can be developed in terms of the total 

increments of the previous step. The results for the cylindrical and spherical 

versions are respectively: 

1 1 1

1 1

i i
i

i i

J   
  

 

U U

U U

 

(3.59) 

 
2

1 1 11

1 1

i i i

i

i i

J
      

  
   

U U P P

U U P P

 

(3.60) 

The increment strategies based on an arc-length should be used by the 

iteration strategies that restrict the corrected solutions to the corresponding 

constraint hyper-surface. That is, the Cylindrical Arc-Length Control Method and 

the Spherical Arc-Length Control Method (Section 3.5.2.3), both for iterative 

corrections, use the Cylindrical Arc-Length Increment and the Spherical Arc-

Length Increment strategies, respectively. The reason is to avoid numerical issues 

due to the possible inconsistency between increment sizes (Santana, 2015). 

Some iteration strategies, however, are not bound to any increment strategy, 

which is the case of the Linear Arc-Length Control Methods (Section 3.5.2.4), the 

Minimum Norm Control Method (Section 3.5.2.5), and the Orthogonal Residue 

Control Method (Section 3.5.2.6). For these iteration strategies, it was opted to use 

the Cylindrical Arc-Length Increment in the predictor phase, due to its better 

numerical efficiency. The expression of Eq. (3.59), based on the total arc-length 

increment of the previous step, is used for these iteration techniques. The reason, as 

previously mentioned, is that the arc-length increment changes after each iteration, 

and the total increment at the end of the previous step is preferably taken as the 

reference to predict the increment of the current step. 
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A shortcoming of the strategies that work with arc-length increments is that 

they are not consistent in physical units. The expressions involve the scalar product 

of displacement vectors that contain both translations and rotations, which are 

different both in units and in orders of magnitudes (Yang & McGuire, 1985). 

Numerical difficulties of certain sort are likely to occur due to such inconsistencies. 

This problem is not a concern when dealing with work increments, for example. 

3.4.1.2. Strategies Based on the Change of Stiffness 

The strategies of this class rely on the stiffness of the system, rather than the 

number of iterations, to measure its degree of nonlinearity and adjust the size of the 

predicted increment of load ratio. The adjustment factor of the increment size is a 

stiffness parameter that relates the stiffness of the system at the beginning of the 

analysis to the stiffness in the current step. The predicted increment of load ratio in 

the first step is used as the reference to compute the new adjusted increment. The 

correct sign must also be imposed. 

Equation (3.61) brings the general expression for this type of strategy to 

obtain the predicted increment of load ratio, for i > 1. S is the adjustment factor 

given by a stiffness parameter, and η can vary from 0.5 to 1.0, but typically assumes 

the value of 0.5. 

1 1

1i S


   

 

(3.61) 

Different stiffness parameters can be employed as the adjustment factor. Two 

of them are presented in the following sections. 

3.4.1.2.1. Current Stiffness Parameter 

The Current Stiffness Parameter (CSP) was presented by Bergan et al. (1978). 

It was proved in Section 3.4.1.1.2 that this parameter corresponds to the conversion 

coefficient H of the External Work Increment strategy when the first step of the 

analysis is taken as the reference for adjusting the predicted increment of external 

work: 

1

1

1
CSP

i






P U

P U

 

(3.62) 
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The CSP is a non-dimensional scalar quantity that was introduced to provide 

a better way to characterize the overall behavior of multiple degree-of-freedom 

nonlinear systems. This parameter indicates whether the system is being loaded or 

unloaded. It has the initial value of unity for any nonlinear system. It is less than 

unity when the system becomes “softer” than the beginning of the analysis and 

greater than unity for stiffening systems. 

The behavior of this parameter is depicted in Fig. 3.4, for a typical instability 

problem with snap-through behavior. The horizontal axis of both diagrams is some 

norm of the displacements vector, intended to characterize the behavior of all 

degrees-of-freedom with a single scalar value. It can be seen that the unstable 

behavior of the problem is characterized by a value of the CSP less than zero. 

Therefore, it is possible to identify load limit points of instability when the stiffness 

parameter becomes negative.  

  

Figure 3.4 – Behavior of the Current Stiffness Parameter (adapted from Bergan et al., 1978) 

A drawback of using this parameter is when the structure presents snap-back 

behavior. As explained in Section 3.4.1.1.2, the quantity in the denominator can 

approach zero in the vicinity of displacement limit points, leading the CSP to 

infinity. A more stable stiffness parameter is the Generalized Displacement 

Parameter, presented next. 
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3.4.1.2.2. Generalized Stiffness Parameter 

The stiffness parameter considered in this work is the Generalized Stiffness 

Parameter (GSP), introduced by Yang & Kuo (1994). This parameter is used in a 

method that is based on the increment of a generalized displacement, D, which can 

be expressed by: 

1

1

j j j

i i i iD     U U

 

(3.63) 

The predicted increment of generalized displacement for the current step is 

compared to the increment of the first step of the analysis. Using Eq. (3.27) to 

express the generalized displacement in terms of the tangent increment of 

displacements, and considering 1 1

0 1  U U , the constraint equation is derived as 

follows: 

1 1

1iD D  

 

(3.64) 

   
2 2

1 1 1 1 1 1

1 1 1 1i i i      U U U U

 

(3.65) 

1 1
1 1 1 1

1 1 1

1

i

i i

 
  

 

U U

U U

 

(3.66) 

where the GSP can be identified as: 

1 1

1 1

1 1

1

GSP
i i

 

 

U U

U U

 

(3.67) 

Alternatively, the constraint equation could be obtained with the following 

constraint parameters, suggested by Yang & Shieh (1990) to improve the numerical 

stability of the solution method: 

1 1 1

1i i i  A U      ,     
1 0iB       ,     

1 1

1iC D 

 

(3.68) 

Just like the use of the CSP, when this strategy is adopted the stiffness of the 

structure is measured with respect to the first incremental step, so stiffening and 

softening behavior are readily identified. The GSP will always have an initial value 

of unity, and stiffening or softening of the structural system are also indicated by 

values greater or less than one, respectively. 
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However, a negative value is only assumed in the steps immediately after load 

limit points. As it can be verified in Eq. (3.67), the numerator is a constant positive 

value, and the denominator, given by the scalar product of the tangent increment of 

displacements of the current and previous steps, controls the sign of the expression. 

The sign of this product indicates whether the increments of the previous and 

current steps are in the same “direction”, as illustrated in Fig. 3.5 for a single degree-

of-freedom system. These directions are different when there is a load limit point 

between the steps. 

  

Figure 3.5 – Behavior of the GSP sign (Yang & Kuo, 1994) 

This strategy is used in the predictor phase of the Generalized Displacement 

Control Method (Section 3.5.2.7), which performs corrective iterations based on a 

constant value of generalized displacement increment. 

Moreover, in the developed tool, this strategy is also used to adjust the 

increment size of incremental single-step methods, since the stiffness parameter 

does not depend on the number of iteration to evaluate the degree of nonlinearity of 

the solution. 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



103 

 

3.4.2. Determination of the Increment Sign 

The appropriate sign of the predicted increment can be selected according to 

several criteria. The most common are based on the properties of the tangent 

stiffness matrix and the behavior of some stiffness parameter, such as the CSP and 

the GSP. 

Crisfield (1991) suggested that the sign of the load increment should be 

positive whenever the tangent stiffness matrix of the beginning of the step is 

positive definite. In his studies, it was shown that the sign of the increment must be 

inverted when a negative pivot is detected in the factored stiffness matrix using the 

Crout decomposition algorithm. Equivalently, the sign of the increment must be the 

same of the previous increment unless the sign of the determinant of the tangent 

stiffness matrix changes. However, as reported by Meek & Tan (1984), this 

procedure is not recommended for systems that exhibit multiple negative 

eigenvalues. 

Alternatively, the CSP, presented in Section 3.4.1.2.1, indicates whether the 

system is being loaded or unloaded. The sign of this parameter should be applied to 

the load ratio increment: if the parameter is positive, the system is being loaded and 

the load ratio should increase; if it is negative, the load is decreasing and the load 

ratio increment should be negative. However, it was mentioned that the CSP might 

present some numerical instabilities near displacement limit points. 

In this work, the criterion to select the appropriate sign for the increment is 

based on the sign of the GSP, whose behavior was explained in Section 3.4.1.2.2. 

This parameter is negative only immediately after load limit points. Therefore, the 

predicted increment sign must be inverted every time the GSP assumes a negative 

value. The increment sign, represented by s in Eq. (3.69), is monitored throughout 

the analysis:  

1

GSP 0

i s

s s

  


   

 

(3.69) 
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3.5. Corrected Solution 

The corrector phase tries to correct the predicted solution. In the case of 

higher order incremental single-step methods, another linear analysis is performed 

with an average stiffness matrix that better represents the stiffness of the step, in 

order to reduce the residual forces generated by the predicted solution. In the case 

of incremental-iterative solution methods, the residual forces are vanished through 

a cycle of iterative corrections of load ratio and nodal displacements. 

3.5.1. Single-Step Correction 

The incremental single-step solution methods all employ a strategy that is 

analogous to solving systems of differential equations by the Runge-Kutta methods 

(Butcher, 1996). This class of method performs a linear analysis with an average 

stiffness matrix that better represents the stiffness of the step, in order to reduce the 

residual forces generated by the predicted solution, but not necessarily make it 

numerically null. 

The total increment of displacements of the i-th step is found by solving the 

purely incremental system of Eq. (3.11), but with an average stiffness matrix, K , 

that represents the stiffness of the entire increment: 

1

i i i  K U P

 

(3.70) 

The update process of external forces and nodal displacements follows Eq. 

(3.3) and Eq. (3.4), respectively, where the total increment of load ratio for the 

current step is the predicted value (Δλi = δλi
1). As mentioned earlier in this work, 

the adopted strategy to adjust the predicted increment value of load ratio in single-

step methods is the GSP-based strategy of Section 3.4.1.2.2. 

The fundamental task of higher order single-step methods is obtaining the 

average stiffness matrix for the current step. Taken as a weighted average, this 

matrix is written as in Eq. (3.71), where αm is the weighting coefficient 

corresponding to one of the n sampling points within the increment in which the 

tangent stiffness matrices, Ki
m, are evaluated. Each tangent matrix is evaluated with 

the total displacements, Ui
m, and the corresponding internal forces, F(Ui

m), at the 

sampling points. 
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1

n
m m

i i
m

 K K

 

(3.71) 

By varying the weighting coefficients and the number and location of the 

sampling points, various types of incremental single-step methods can be devised 

from Eq. (3.71). The number of sampling points employed in each step defines the 

order of the method. In general, the accuracy of the nonlinear response will improve 

with an increase in this order. 

Figure 3.6 shows a schematic of a second-order single-step method, which 

uses two sampling points, m1 and m2, to take an incremental step in a single degree-

of-freedom system. This figure also shows how a linear analysis performed with 

the average stiffness matrix tends to reduce the residual forces generated by the 

predicted solution, Ri, to a new corrected value, 
iR . The step positions of the 

sampling points are represented by the coefficient µ, which are fractions of the 

predicted increment. 

  

Figure 3.6 – Schematic of an increment with a second-order single-step method 

Major advantages of incremental single-step methods are their 

implementation simplicity and efficiency. The number of linear analyses performed 

in each increment is the same as the order of the method. For the implemented 

methods, only one or two analysis are required per step. In this regard, they are 

particularly attractive for the analysis of structures exhibiting smooth nonlinearity. 
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A drawback of these methods is that the residual forces are not vanished after 

the single-step correction, because of the use of a single representative stiffness in 

each increment. Therefore, a drift-off error is generated in each incremental step 

and accumulated along the analysis. If the increments are not sufficiently small, this 

error can lead to very inaccurate responses, as illustrated in Fig. 3.7. Although the 

drift-off error can be reduced by using smaller increments, the additional number 

of steps required for analyzing highly nonlinear systems may become unreasonable. 

In this case, the use of an iterative scheme is more appropriate. 

  

Figure 3.7 – Drift-off error resulting from residue accumulation in single-step methods 

Three incremental single-step methods were implemented in the developed 

tool: Euler, Heun, and Midpoint methods. Their properties are discussed next. 

3.5.1.1. First-Order Method 

The Euler method, or simple step method, is the most elementary. It consists 

of a first-order Runge-Kutta method that uses an average stiffness matrix calculated 

with the deformed geometry and corresponding internal forces that exist at the start 

of the increment. In other words, the Euler method uses only the predicted solution, 

with no corrections. Therefore, no other procedure, other than updating geometry 

and external forces, is necessary to advance to the next step after obtaining the 

predicted solution. 
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3.5.1.2. Second-Order Methods 

The fundamental source of error in the Euler method is the assumption that 

the stiffness at the beginning of the incremental step can be used for the entire 

increment. The family of second-order Runge-Kutta methods provides an 

improvement to the Euler method approach. Such methods use two sampling points 

to evaluate the tangent stiffness matrices. These matrices are then used to calculate 

the representative stiffness of the step using Eq. (3.71). Decreasing step size causes 

the error to decrease at a faster rate than the Euler method (Chapra & Canale, 2013). 

3.5.1.2.1. Heun Method 

The Heun method takes the average stiffness matrix as the arithmetic mean 

of the tangent stiffness matrices evaluated at the start of the increment and at the 

end of the predicted increment. Therefore, the values of the position coefficients 

(µ1, µ2) and corresponding weights (α¹, α²) for the first and second sampling points 

for this method are: 

1 2

1 2

0.0 1.0

0.5 0.5

   

   

 

(3.72) 

3.5.1.2.2. Midpoint Method 

The Midpoint method, also known as improved polygon method, relies fully 

on using the stiffness of the middle of the predicted increment as the representative 

stiffness for the entire step. This consideration is equivalent to set the following 

values for the position coefficients (µ1, µ2) and corresponding weights (α¹, α²) for 

the first and second sampling points:  

1 2

1 2

0.0 0.5

0.0 1.0

   

   

 

(3.73) 
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3.5.2. Iterative Correction 

The corrective phase of incremental-iterative methods aims to restore the 

structure equilibrium by vanishing the residual forces, generated by the predicted 

solution, through an iterative cycle of improved solutions. This cycle begins with 

the update of the total load ratio, λi
1, and the total nodal displacements, Ui

1, by 

adding the predicted increments (δλi
1 and δUi

1) to the results from the previous step 

(λi-1 and Ui-1). With geometry updated, the corresponding internal forces, F(Ui
1), 

are calculated, and the residual forces, Ri
1, can be obtained by the difference 

between external and internal nodal forces. At this point, convergence is checked. 

There are a few different criteria to check the convergence of the iterative 

process (Bergan & Clough, 1972). The most common are based on the residual 

forces, residual displacements, or the work produced by these residual results. The 

adopted convergence criterion for the developed algorithm is a force-based check, 

which is done according to Eq. (3.74). It consists of analyzing the ratio between the 

Euclidean norms of the residual force vector and the reference load vector, which 

must be lower than a given tolerance, ε. This tolerance is a value stipulated by the 

analysis and is usually in the order of 10-5 to 10-3, depending on the desired 

accuracy. If convergence is satisfied, the predicted solution was sufficient to 

achieve a tolerable equilibrium state and the algorithm can proceed to the next step, 

otherwise the first corrective iteration starts. 

j

i
 

R

P

 

(3.74) 

The first procedure of each corrective iteration is evaluating the tangent 

stiffness matrix considering the nodal displacements and internal forces of the last 

obtained configuration. If the modified version of the Newton-Raphson iteration 

scheme is adopted, this step is skipped, and the tangent matrix evaluated at the 

beginning of the predictor phase is used. The tangent and residual increments of 

displacements are calculated with the reference load vector and the last obtained 

residual force vector, respectively, as in the linear systems of Eq. (3.26). Then, the 

iterative increment of load ratio is calculated according to the constraint equation 

of the corrective method (presented in the following sections). Finally, the iterative 

increment of displacements is obtained with Eq. (3.27). 
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The iterative increments of load ratio and displacements are restricted to the 

hyper-surface defined by the constraint equation that characterizes the selected 

solution method. If the performed iterations involve not only displacements 

corrections, but also corrections of load ratio, then it is called a continuation 

method, because it can continue to trace the equilibrium path beyond limit points. 

In this case, the constraint surface that controls the corrected solutions crosses the 

equilibrium path at one or more points. 

After obtaining a corrected solution, the next procedures are the same used to 

check the convergence of the predicted solution: update the total values of load ratio 

and nodal displacements, calculate external, internal, and residual forces, and 

finally check the convergence for the current iteration. Figure 3.8 brings a schematic 

illustration of the described procedures. 

  

Figure 3.8 – Schematic of iterative corrections 

As mentioned in the introduction of this work, one single solution method 

may not be capable of solving any general nonlinear problem. Therefore, most of 

the well-known corrective techniques were implemented. Some of these iterative 

techniques are related to a particular predictive technique, and other are not bound 

to any. Because of that, some computer programs ask users to provide the predictive 

and corrective techniques separately. In the developed tool, in order to simplify the 
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user input data, the solution method refers to the technique for the corrective 

iterations and it includes the predictive technique that is more appropriate. In the 

next sections, the characteristics of each corrective technique are described. 

It should be mentioned that, in the developed algorithm, it was opted to limit 

the correction of the load ratio value, in all techniques, to 0.5, avoiding exorbitant 

results. 

3.5.2.1. Load Control Method 

The Load Control Method (LCM) is often referred to as the conventional 

Newton-Raphson method. In this method, a fixed amount of load is employed in 

each increment and kept constant after each iteration. The entire increment of load 

ratio is applied in the predicted solution with the Load Increment Method (Section 

3.4.1.1.1). Then, corrective iterations are performed in an attempt to satisfy 

equilibrium requirements with displacement corrections only. Therefore, the 

iterative increments of load ratio are null during the corrective cycle. For j > 1: 

0j

i 

 

(3.75) 

This procedure is illustrated next: 

  

Figure 3.9 – Schematic of the Load Control Method 
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A significant shortcoming of this method becomes apparent when attempting 

to solve problems with load limit points. Once a fixed load is defined in the 

predictor phase, there is no way to modify the load vector should a limit point occur 

within the increment. Although performing the steps with a reduced load ratio 

increment can enable one to approach the limit point slowly, the resulting near 

singular nature of the stiffness matrix makes it difficult to trace the post-limit state 

response of a structure. 

A typical result when tracing the equilibrium path of systems with snap-

through behavior using the LCM is illustrated in Fig. 3.10. For systems with 

displacement limit points only, no problems should be expected. In practice, this 

method represents the behavior of structures subjected to load testing. 

  

Figure 3.10 – Typical result for snap-through behavior using the Load Control Method 

Among the nine incremental-iterative solution methods implemented, only 

this strategy is not a continuation method. All the others are supposed to capture the 

real equilibrium path in post-limit analyses, although some limitations should be 

expected for each one. 

An advantage of using the LCM is that, as the corrections of load ratio is 

always zero, it is not necessary to compute the tangent increment of displacements, 

so only one linear system of Eq. (3.26) need to be solved, making it computationally 

more efficient. Therefore, this method should be used when the analyst is sure about 

the absence of load limit points before the total load is reached. 
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3.5.2.2. Work Control Method 

The Work Control Method (WCM), proposed by Powell & Simons (1981), 

uses the predictive technique described in Section 3.4.1.1.2 to apply an increment 

of external work, δW, to the system, which is kept constant in the corrective cycle. 

Therefore, the constraint condition requires a zero increment of external work for 

each iteration. For j > 1, this is represented by: 

0j

iW 

 

(3.76) 

0j j

i i  P U

 

(3.77) 

Substituting Eq. (3.27) into Eq. (3.77), and considering that the increment of 

load ratio is not null, the constraint equation of Eq. (3.79) is obtained. 

  0j j j j

i i i i     P U U

 

(3.78) 

j
j i
i j

i


  



P U

P U

 

(3.79) 

This process is illustrated in Fig. 3.11, where it is observed how the external 

work is conserved by adjusting both displacements and load ratio in each iteration. 

  

Figure 3.11 – Schematic of the Work Control Method 
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As the WCM corrects the value of the load ratio in each iteration, it is more 

suitable for capturing snap-through behavior than the LCM. However, as mentioned 

in Section 3.4.1.1.2, for structures with a small number of degrees-of-freedom and 

which the major forcing directions present a snap-back behavior, the scalar product 

in the denominator of Eq. (3.79) tends to zero near a displacement limit point (Yang 

& Shieh, 1990). Thus, this method has limited success for capturing snap-back 

behavior. 

3.5.2.3. Constant Arc-Length Control Methods 

In these methods, an increment of arc-length, ΔL, defined by the norm of the 

displacements and load increments, is kept constant throughout the iteration 

process. This means that the arc-length defined by the increments of the current 

iteration must have the same value of the arc-length defined by the increments of 

the previous iteration. Therefore, for j > 1 we have: 

1j j

i iL L   

 

(3.80) 

The expressions of the increment of arc-length for the previous and current 

iterations are respectively: 

  
1

2 21 1 1 1j j j j

i i i iL          U U P P

 

(3.81) 

      
1

2 21 1 1j j j j j j j

i i i i i i iL             U U U U P P

 

(3.82) 

where β is the previously presented parameter that defines different versions 

of the arc-length measurement to restrict the iterations: cylindrical arc-length (β = 

0), spherical arc-length (β = 1), and elliptical arc-length (0 < β < 1). The 

interpretation of these versions are depicted in Fig. 3.12 for a system of two degrees-

of-freedom. In that figure, A is the starting point of the current incremental step and 

B is the equilibrium solution reached after the iterative cycle. In this work, only the 

cylindrical and the spherical versions are implemented, according to Crisfield 

(1981, 1991). 

As commented in Section 3.4.1.1.3, the cylindrical and spherical versions of 

the Constant Arc-Length Control Method (abbreviated by ALCM_CYL and 

ALCM_SPH) use their corresponding predictive strategies (Cylindrical Arc-Length 

Increment and Spherical Arc-Length Increment) to calculate the increment that 
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defines the constraint hyper-surface for iterating.  The reason is to avoid numerical 

problems due to the possible inconsistency between increment sizes when using 

other techniques (Santana, 2015). 

  

Figure 3.12 – Variations of the arc-length measurements for controlling iterations (Leon et al., 

2011) 

Substituting Eq. (3.81) and Eq. (3.82) into Eq. (3.80), using Eq. (3.27) to 

express the increment of displacements of the current iteration in terms of the 

tangent and residual components, and making the necessary algebraic 

manipulations, we arrive at the following quadratic equation in terms of the 

unknown iterative increment of load ratio: 

   
2

2 0j j

i ia b c    

 

(3.83) 

where: 

 

 

1 1

12

j j

i i

j j j j

i i i i

j j j

i i i

a

b

c

 




    


         


      


U U P P

U U U P P

U U U  

(3.84) 

The quadratic equation has two solutions for the increment of load ratio, 

(δλi
j)1 and (δλi

j)2, given by Eq. (3.85). Each solution corresponds to a point on the 

constraint hyper-surface that satisfies the condition of keeping the arc-length 

constant. 

 
2

1,2

j

i

b b c

a a a

 
     

 

 

(3.85) 
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Selecting the correct solution of the quadratic equation is important to avoid 

regression on the equilibrium path. If the correct solution is selected in all iterations, 

the algorithm advances in the equilibrium path. Otherwise, it goes back, as indicated 

in Fig. 3.13. 

 

Figure 3.13 – Solutions of the quadratic equation of Constant Arc-Length Control Methods 

The correct value of the load ratio increment is the one that provides a solution 

for the increment of displacements that is closer to the previous solution. 

Mathematically, it means that the scalar product between the vectors of 

displacement increments of the previous and current iterations assumes a greater 

value when the correct solution of the quadratic equation is selected. That is, 

considering the correct solution to be (δλi
j)1:  

   
1 2

1 1j j j j

i i i i

 

 
      U U U U

 

(3.86) 

  

  

1 1

1

1 1

2

j j j j j

i i i i i

j j j j j

i i i i i

 

 

       



       

U U U U

U U U U
 

(3.87) 

     1

1 2
0j j j j

i i i i

     U U

 

(3.88) 

If the scalar product of the displacement vectors in Eq. (3.88) is positive, the 

correct solution must be the greater value provided by Eq. (3.85). Otherwise, the 

correct solution is the smaller value of that expression. Therefore, it can be 

concluded that the correct solution of the quadratic equation depends on the sign of 
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the scalar product between the two vectors of Eq. (3.88), and the constraint equation 

for obtaining the iterative increment of load ratio is: 

 
2

1signj j j

i i i

b b c

a a a

  
       

 
U U

 

(3.89) 

This expression, for both the cylindrical and spherical versions, may result in 

a complex value if the incremental steps are not sufficiently small (Krenk, 1995), 

or near multiple equilibrium paths (Meek & Tan, 1984). When it happens, the 

program developed in this work interrupts the analysis and returns a warning. 

3.5.2.4. Linear Arc-Length Control Methods 

These types of arc-length control method, also known as orthogonal arc-

length methods, consist of restricting the iterative increments to a hyper-plane that 

is orthogonal to the increments of a previous solution. The selection of this previous 

solution to set the orthogonality condition is what distinguishes the types of 

linearized arc-length methods. 

In a version presented by Riks (1972) and Riks (1979), known as Fixed 

Normal Plane (ALCM_FNP), the vectors of the iterative solution (δUi
j and j

i P ) 

are orthogonal to the vectors of the predicted solution (δUi
1 and 1

i P ). The 

application of this orthogonality condition is given in Eq. (3.90). Then, Eq. (3.27) 

is used to decompose the iterative increment of displacements into a tangent and a 

residual component, in Eq. (3.91). Finally, the constraint equation for calculating 

the iterative increment of load ratio is obtained in Eq. (3.92), for j > 1. 

 1 1 0j j

i i i i      U U P P

 

(3.90) 

   1 1 0j j j j

i i i i i i         U U U P P

 

(3.91) 

1

1 1

j
j i i
i j

i i i

 
  

    

U U

U U P P

 

(3.92) 

Alternatively, a version presented by Ramm (1981) and Ramm (1982), known 

as Updated Normal Plane (ALCM_UNP), uses the vectors of the incremental 

solution of the previous iteration (ΔUi
j-1 and 1j

i

 P ) to set the orthogonality 

condition. The constraint equation for this version is similarly obtained as follows: 
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 1 1 0j j j j

i i i i

       U U P P

 

(3.93) 

   1 1 0j j j j j j

i i i i i i

          U U U P P

 

(3.94) 
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j j
j i i
i j j j

i i i



 

 
  

    

U U

U U P P

 

(3.95) 

These methods are depicted in Fig. 3.14. Points B0, B1, and B2 correspond, 

respectively, to the equilibrium solution obtained with the Constant Arc-Length 

Control Method (cylindrical or spherical version), Updated Normal Plane, and 

Fixed Normal Plane versions of the Linear Arc-Length Control Method. 

  

Figure 3.14 – Schematic of the Linear Arc-Length Control Methods (adapted from Leon et al., 

2011) 

Differently from the Constant Arc-Length Control Methods, in which the 

constraint equation is nonlinear, the result of the orthogonality conditions is a 

simpler linear equation, so less effort is spent evaluating the expression. 

In the developed tool, the adopted strategy for the predicted increment, when 

these iterative techniques are selected, is the cylindrical version of the Arc-Length 

Increment (Section 3.4.1.1.3). Notice, however, that the iterative cycle do not 

maintain the predicted increment of arc-length constant throughout the entire step. 
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3.5.2.5. Minimum Norm Control Method 

The Minimum Norm Control Method (MNCM), presented by Chan (1988), 

tries to find the iterative increment of load ratio that results in the minimum 

increment of displacements. This is equivalent to set the norm of the vector of 

iterative increment of displacements to a minimum value. Mathematically, this 

condition means that the derivative of the norm of the displacement increments with 

respect to the increment of load ratio is zero. For j > 1: 

 
0

j j

i i

j

i

  




U U

 

(3.96) 

Using Eq. (3.27) to express the increment of displacements in terms of the 

tangent and residual components, expanding the expression, and performing the 

derivatives, we arrive at the constraint equation to satisfy the proposed condition:  

    
0

j j j j j j

i i i i i i

j

i

         




U U U U

 

(3.97) 

  2
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j j j j j j j j

i i i i i i i i
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i

          



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(3.98) 
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 
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(3.99) 

This iterative strategy is not bound to any strategy to calculate the predicted 

increment, so the cylindrical version of the Arc-Length Increment (Section 

3.4.1.1.3) was selected for this purpose, due to its efficiency. 

3.5.2.6. Orthogonal Residue Control Method 

This strategy was proposed by Krenk (1995) and Krenk & Hededal (1995). 

To summary the idea, a vector of average residual forces, Ri
a, is introduced. This 

average residue is defined as the difference between the external forces in the 

current iteration and the internal forces in the previous iteration. For j > 1, this is 

expressed as: 

   1 1 1

1 1

a j j j j j

i i i i i i i i

  

          R P F U U R P

 

(3.100) 
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The constraint condition of this iterative technique is to take the average 

vector of residual forces to be orthogonal to the incremental vector of displacements 

of the previous iteration. This condition is applied by setting the scalar product 

between these two vectors to zero: 

1 0a j

i i

 R U

 

(3.101) 

which leads to the following expression for the constraint equation, for j > 1: 

1 1
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j j
j i i
i j
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 



 
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 
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(3.102) 

As with the MNCM, this iterative strategy is not bound to any strategy to 

calculate the predicted increment and it is not intended to keep the predicted 

increment of any control parameter. The cylindrical version of the Arc-Length 

Increment was also adopted due to its efficiency. 

3.5.2.7. Generalized Displacement Control Method 

The Generalized Displacement Control Method (GDCM) consists of 

maintaining the predicted increment of generalized displacement, applied with the 

technique described in Section 3.4.1.2.2, constant throughout the entire step. The 

expression for the increment of generalized displacement was given in Eq. (3.63), 

and it is reproduced here in terms of the tangent and residual increments of 

displacements, for j > 1: 

 
2

1 1

1 1

j j j j j

i i i i i i iD         U U U U

 

(3.103) 

To force the increment of generalized displacement to be null in each 

iteration, this expression must be zero. Therefore, the following constraint equation 

is obtained: 

1

1

1
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j i i
i j

i i





 
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 
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(3.104) 

The GDCM has little physical meaning. However, Cardoso & Fonseca (2007) 

show that it can be seen as a linear arc-length method. 
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3.6. Summary of Solution Methods 

In the previous sections, the procedures for solving the linearized system of 

equilibrium equations, by means of incremental single-step or incremental-iterative 

numerical methods, were described. A flow-chart of the general solution algorithm 

is presented in the diagram of Fig. 3.15. 

It is important to mention that this algorithm is general not only for the 

geometrically nonlinear formulations, but also for any nonlinear structural problem, 

that includes other sources of nonlinearity. The differences lie in the processes of 

evaluating the tangent stiffness matrix and calculating the internal nodal forces, 

which are indicated by the bold boxes in the diagram. In the developed tool, these 

steps are distinguished between UL and CR formulations. The computational 

implementation of these processes is described in the next chapter. 

  

Figure 3.15 – General solution algorithm of the incremental system of equilibrium equations 

Some of the steps of the general algorithm depend on the selected methods 

for calculating the predicted and the corrected solutions. The formulas to obtain the 

predicted increment of load ratio for the techniques implemented in this work are 

summarized in Table 3.2. Both the expression based on the previous predicted 

solution and the expression based on the total increments of the previous step are 

shown. In the sequence, Table 3.3 brings the equations for the corrective techniques 

to calculate the iterative increment of load ratio. The adopted predictive techniques 

are also indicated. 
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Table 3.2 – Summary of equations for calculating the predicted increment of load ratio 

Predictive Technique Load Ratio Increment (i > 1) 

Load Increment 

(LI) 

1 1

1i is J      

1

1i is J      

External Work Increment 

(EWI) 

1
1 1 1

1 1

i
i i

i

s J 



   



P U

P U
 

1 1 1

1

i i
i

i

s J   
  



P U

P U
 

Cylindrical Arc-Length Increment 

(CALI) 

1 1
1 1 1 1

1 1 1

i i
i i

i i

s J  


 
   

 

U U

U U
 

1 1 1

1 1

i i
i

i i

s J   
  

 

U U

U U
 

Spherical Arc-Length Increment 

(SALI) 

1 1
1 1 1 1

1 1 1

i i
i i

i i

s J  


   
   

   

U U P P

U U P P
 

 
2

1 1 11

1 1

i i i

i

i i

s J
      

  
   

U U P P

U U P P
 

Generalized Displacement Increment 

(GDI) 
1 1

1 GSPi s    

Size adjustment factor: 
1

2

1

i

i

N
J

N 

 
  
 

 

Generalized Displacement Parameter: 

1 1

1 1

1 1

1

GSP
i i

 

 

U U

U U
 

Increment sign: 

1

GSP 0

i s

s s

  


   
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Table 3.3 – Summary of equations for calculating the iterative increment of load ratio 

Solution Method 
Predictive 

Technique 
Load Ratio Correction (j > 1) 

Load Control LI 0j

i   

Work Control EWI 
j

j i
i j

i


  



P U

P U
 

Constant Arc-Length* 
CALI/ 

SALI 

2

j

i

b b c
s

a a a

 
     

 
 

Linear Arc-Length 

(Fixed Normal Plane) 
CALI 

1

1 1

j
j i i
i j

i i i

 
  

    

U U

U U P P
 

Linear Arc-Length 

(Updated Normal Plane) 
CALI 

1

1 1

j j
j i i
i j j j

i i i



 

 
  

    

U U

U U P P
 

Minimum Norm CALI 
j j

j i i
i j j

i i

 
  

 

U U

U U
 

Orthogonal Residue CALI 

1 1

1

j j
j i i
i j

i

 



 
  

 

U R

U P
 

Generalized Displacement GDI 
1

1

1

1

j
j i i
i j

i i





 
  

 

U U

U U
 

* Parameters for Constant Arc-Length Methods: 

 

 

1 1

12

j j

i i

j j j j

i i i i

j j j

i i i

a

b

c

 



    

         

     

U U P P

U U U P P

U U U

 

 1sign j j

i is   U U  

 

Cylindrical Arc-Length 0

Spherical Arc-Length 1








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4. Developed Tool 

4.1. Introduction 

Based on the theory presented in previous chapters on the nonlinear 

formulation of equilibrium equations and the solution methods for dealing with the 

incremental system, this chapter describes the development and use of a graphical-

interactive tool for performing geometrically nonlinear analysis of two-dimensional 

frame structural models. This application was incorporated as a new analysis 

module of the Ftool (Two-dimensional Frame Analysis Tool) program (Martha, 

1999), which is a largely used software in the civil engineering community and has 

demonstrated to be a valuable program for teaching structural analysis over the last 

decades. 

When creating a computer program to execute a task that would be manually 

impractical, a series of questions must be considered besides the theoretical 

understanding of the problem. These questions include concerns about memory 

storage and efficiency, a data structure to manage the information in the pre, post, 

and processing steps, a robust source code to avoid unexpected errors, and a good 

architecture and modularization of the code to make it easy to understand, maintain, 

and expand. In graphical-interactive programs, it is still necessary to design and 

create a user-friendly graphical interface, predict and control user actions, and deal 

with topics on computer graphics and computational geometry to provide the best 

experience for those who want to simulate and visualize the physical phenomenon 

studied. 

All of that had to be contemplated during the development of the tool that 

motivated this work. However, not all of these issues are discussed in this 

document, in which the attention is turned to the implementation of the numerical 

methods to perform the geometrically nonlinear analysis of two-dimensional frame 

models, as well as the developed graphical user interface, considering its 

functionalities and characteristics. 
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The second section of this chapter is focused on the computer implementation 

of the solution algorithms. The goal is to present how the concepts covered in 

Chapter 3 were implemented to the developed tool by means of a step-by-step 

description of an auxiliary code that has didactics purposes only. The third section 

is intended to show how the developed tool works, from a user point of view, and 

its main features. The new analysis menus of the graphical user interface and the 

developed plotting environment are described. 

4.2. Computer Implementation 

The task of processing and computing the results of a mechanical analysis is 

done by a solver, where the algorithms of the solution methods are implemented. 

The analysis solver of the Ftool program is the FRAMOOP system, a simplified 

version of the FEMOOP (Finite Element Method Object Oriented Program) system 

(Martha & Parente 2002), modified to perform only linear-elastic analysis of 

framed structure models. This system is an external library, leaving the Ftool 

responsible for the pre and post-processing phases, while the FRAMOOP performs 

the structural analysis. This strategy helps future implementations and independent 

code maintenance of both programs. 

The FRAMOOP system is written in the C programming language and adopts 

a programming philosophy similar to the Object Oriented Programming (OOP) 

paradigm (Cox & Novobilski, 1991). This programming paradigm is advantageous 

for structural analysis codes, providing modularization and reusability by means of 

classes, heritance, polymorphism, and encapsulation mechanisms (Rangel & 

Martha, 2019). Since the C language is not object-oriented, the simulation of the 

OOP paradigm in the FRAMOOP system is formally done by using pointers to 

functions as macros to generically call abstract methods of super classes. 

Presenting the FRAMOOP code would not be didactic, as C is a low level 

programming language. For this purpose, an auxiliary program, called NLframe2D, 

was developed as a parallel implementation using the MATLAB script language. 

This program is a non-graphical application with the same general code structure 

of the nonlinear analysis module of the FRAMOOP system. The advantage is that 

MATLAB provides a programming language with a much simpler syntax, when 

compared to the C language, ideal to be presented for those who are interested in 

the computer implementation of an engineering problem. 
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This auxiliary program is used in the next sections only to present the 

implementation of the solution process of the nonlinear structural problem 

considered in this work. It is important to mention that this code is a very simplified 

version of what was developed in FRAMOOP. The intention here is to show the 

general structure of the nonlinear analysis algorithm. Therefore, many details have 

been omitted to emphasize what is pertinent to solving the problem. These details 

include, for example, checks of matrix singularity and real values, among other 

particularities of the implementation that are not relevant. The code also does not 

bother to show the strategy to perform the analysis in an interactive-adaptive 

fashion. In addition, efficiency and performance are not a concern, so code clarity 

can be prioritized. It should be noted the importance of a good documentation by 

means of comments that help the understanding of the code lines. 

In addition, this auxiliary program is open-source, intended to receive the 

collaboration and suggestions from researchers interested in the subject. It is 

available for download in (the code may have been modified and updated): 

https://www.mathworks.com/matlabcentral/fileexchange/73129-nlframe2d. 

4.2.1. Main Algorithm 

The solver of the NLframe2D program is all implemented in a single script 

file, named solve.m, that contains several functions to perform the incremental 

analysis. The main function of the program is responsible for implementing the 

code that execute the steps of the general algorithm for nonlinear problems, 

depicted in Fig. 3.15. Auxiliary functions for the particular nonlinear formulation, 

such as the evaluation of the tangent stiffness matrix and the vector of internal 

forces, are presented in the following sections. 

The main function has the same name of the file. It receives, as input 

arguments, some data structures with model information and analysis options, 

which were input by user and have already been pre-processed. These pre analysis 

steps are the common tasks to any computer implementation for structural analysis 

using the FEM: reading model information, counting and numbering degrees-of-

freedom, assembling vectors and matrix of global degrees-of-freedom numbers, etc. 

The input arguments of the main function are described in Table 4.1. The 

implementation of the predicted solution is given in the code snippet of Fig. 4.1. 
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Table 4.1 – Input arguments of the main solver function of the NLframe2D program 

Variable Description 

Model 
Data structure with fields for storing model information, 

such as total number of equations (.neq), number of 

equations of free degrees-of-freedom (.neqf), etc. 

Anl 

Data structure with fields for storing analysis options and 

parameters. The analysis options include type of 

formulation (.formulation), type of geometric stiffness 

matrix (.geom_matrix), solution algorithm (.algorithm), 

type of increment adjustment (.increment_type), and 

type of Newton-Raphson iteration scheme 

(.iteration_type). The analysis parameters include 

initial load ratio increment (.increment), maximum load 

ratio (.max_ratio), maximum number of steps 

(.max_steps), maximum number of iterations 

(.max_iter), desired number of iterations 

(.desired_iter), and tolerance for convergence (.tol). 

Elem 

Vector of data structures with fields for storing element 

information, such as end nodes (.node1, .node2), initial 

length (.L), initial angle with horizontal axis (.angle), 

gather vector with degrees-of-freedom numbers (.gle), etc. 

Pref 
Vector of reference nodal loads, taken as the total applied 

loads. 

Result 

Data structure to be filled with the results for each 

incremental step, such as the vector of all load ratios (.lr), 

and a matrix with all vectors of nodal displacements (.U). 

This structure is also an output of the function. 
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Figure 4.1 – Implementation of the predicted solution 
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As seen in Fig. 4.1, the main function starts by initializing the vector of nodal 

displacements, U, the value of load ratio, lr, and the counter of number of steps, i. 

The incremental process then begins with a loop that runs until the maximum 

number of steps or the maximum load ratio value is reached. The step counter is 

immediately incremented in the beginning of the incremental loop. 

The predictor phase starts with the update of the reference configuration for 

the UL formulation (line 10). As explained in Chapter 2, this formulation is based 

on a kinematic description that takes the last obtained equilibrium configuration 

(step beginning) as the reference configuration to measure the increment of 

variables to reach the next equilibrium configuration. For this purpose, an auxiliary 

function is called to store the values of length, angle with global X-axis, and internal 

forces of each element, at the beginning of the step. These reference values are then 

used in the iterative cycle to compute increments of element internal forces using 

the UL formulation. This auxiliary function will not be shown because it can be 

easily implemented by storing the current values of the mentioned properties in 

appropriate fields of each element data structure. 

The tangent stiffness matrix, Kt, for the predicted solution is evaluated (line 

13) considering the current equilibrium configuration, i.e., element internal forces 

and nodal displacements obtained at the end of the previous step. Therefore, this 

function receives the vector of element data structures and the vector of nodal 

displacements, both updated with the results from the previous step, as input 

arguments. This function has a particular implementation for the UL and the CR 

formulations. Each implementation is described in Section 4.2.2. A check is 

recommended at this point to interrupt the analysis when the evaluated tangent 

matrix is singular. The tangent stiffness matrix is then used to calculate the tangent 

increment of displacements, d_Ut, by solving a linear system with the reference 

load vector (line 16). An auxiliary function for solving linear systems was 

implemented for this task, but it is not shown here. 

The next step is to calculate the predicted increment of load ratio. This task is 

executed in different ways depending on whether the incremental step is the first or 

not. For the first step, the initial sign of the predicted increment, s, is set to positive 

(line 20). Then, the predicted increment of load ratio, d_lr, is taken as the value 

prescribed by the analyst (line 23). It is also necessary to store the squared value of 
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the norm of the tangent increment of displacements in the first step, n2 (line 26). 

This value is used in the expression to calculate the GSP in subsequent steps. 

For the remaining incremental steps (i > 1), the GSP is calculated according 

to Eq. (3.67) in line 29. The increment sign is adjusted in line 32, according to the 

criterion described in Section 3.4.2, where it was explained that the sign of the 

predicted increment must be inverted every time the GSP value is negative. After 

that, the adjustment factor of the increment size, J, is obtained according to Eq. 

(3.32). The variable j in the expression of line 38 stores the number of iterations 

performed in the previous step, which must be increased by one to avoid division 

by zero, since the predicted solution corresponds to zero iterations. If the user 

selects the option to perform the analysis with constant increments, the value of the 

adjustment factor is set to unity. Finally, the predicted increment of load ratio is 

calculated in an auxiliary function (line 44), where the expressions of Table 3.2 are 

implemented. Again, there is no need to show this function here, as it has a simple 

implementation. To avoid exorbitant results, it is recommended to limit the value 

of the load ratio increment returned by this function to a reasonable value. 

After obtaining the predicted increment of load ratio, the predicted increment 

of displacements, d_U, is calculated according to Eq. (3.27) in line 48 (using only 

the tangent increment of displacements). To finish the predictor phase, the 

predicted increments of load ratio, d_lr_1, tangent displacements, d_Ut_1, and full 

displacements, d_U_1, are stored to be used in the next step and in the iterative 

cycle. The corrector phase then starts, and its implementation is given in Fig. 4.2. 
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Figure 4.2 – Implementation of the corrected solution 
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The corrector phase starts with a check of the solution method. If a second-

order single-step method is selected (Heun method or Midpoint method), an 

auxiliary function is called to return the corrected solution for the increment of 

displacements d_U. This function is described afterwards. Then, the increments of 

load ratio and displacements for the current step (D_lr and D_U) are set as the values 

obtained so far (lines 61 and 62). The counter for the number of iterations, j, is 

initialized as zero (line 65), since it is assumed that the first corrective iteration 

starts only after the convergence for the predicted solution has been checked. The 

iterative cycle then begins in a loop that runs until the maximum number of 

iterations is reached. If this condition occurs, it is because the algorithm failed to 

converge to an equilibrium configuration in the current incremental step. 

In the beginning of the iterative cycle, the total values of load ratio and nodal 

displacements are updated with the corrected increments obtained from the last 

iteration, or with the predicted increments if it has just entered the loop (lines 68 

and 69). The vector of external nodal forces, P, are easily obtained from the total 

load ratio (line 72), and the vector of internal nodal forces, F, need to be evaluated 

for the current level of nodal displacements in an auxiliary function. Just like the 

function to evaluate the tangent stiffness matrix, this auxiliary function also has a 

particular implementation for each nonlinear formulation. Section 4.2.3 describes 

the implementation for the UL and CR formulations. The vector of residual forces, 

R, is then obtained by the difference between the vectors of external and internal 

forces (line 76). 

The convergence for the current iteration is checked in accordance to the 

criterion based on the norm of the residual forces, given in Eq. (3.74). If this norm 

is sufficiently small, when compared to the norm of the reference load vector, the 

algorithm converged to a tolerable equilibrium configuration. Notice, in line 79, 

that only the components related to free degrees-of-freedom of the vectors of 

residual forces and reference loads are considered for taking the norms. If 

convergence is guaranteed or if a single-step solution method is selected, the 

algorithm exits the loop to proceed to the next incremental step. Otherwise, if 

convergence has not yet been reached for incremental-iterative methods, the 

algorithm proceeds to the next iterative correction and immediately increments the 

counter of iteration number (line 85). 
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The correction of load and displacement increments starts by checking the 

type of iteration scheme. If the standard version of Newton-Raphson iterations is 

selected, a new tangent stiffness matrix is evaluated with the updated configuration 

(line 89), i.e., with the element internal forces and nodal displacements obtained at 

the end of the previous iteration. Again, a check for matrix singularity is 

recommended after evaluating the new tangent stiffness matrix. Otherwise, if the 

modified version of Newton-Raphson iteration scheme is selected, the tangent 

stiffness matrix evaluated at the beginning of the incremental step for the predicted 

solution (line 13) continue being used. 

The tangent and residual increments of the displacement corrections are 

calculated with linear systems using, respectively, the reference loads and the 

residual forces (lines 93 and 94). Since the same coefficient matrix is used in both 

systems, an efficient program should not solve two systems separately, but optimize 

the process to use the same decomposed coefficient matrix. The iterative correction 

of load ratio is return by a function (line 97) that implements the expressions for 

each iterative technique, presented in Table 3.3. This function is omitted here and, 

just as the predicted increment of load ratio, the returned result should be limited to 

a reasonable value. Furthermore, a check for a real number is recommended, since 

the expressions of the Constant Arc-Length strategies (cylindrical and spherical), 

given by Eq. (3.89), can assume complex values. The iterative correction of nodal 

displacements is finally obtained in accordance with Eq. (3.27), in line 101. Once 

the corrections of load and displacements are obtained, the incremental values of 

these quantities, for the current step, are updated (lines 104 and 105). Finally, the 

same process for updating total results and checking convergence, previously 

described, is repeated (lines 68 to 80). 

When the algorithm exists the iterative loop, a few command lines are 

necessary to check if the reason for breaking was the convergence success or failure. 

In case of success, the algorithm stores the results of the new obtained equilibrium 

configuration. Otherwise, in case of convergence failure, the program exists the 

main function and displays a warning. There is no need to show these simple code 

lines. The basic results to be stored are the load ratio value and the vector of nodal 

displacements, in order to plot the curve of equilibrium path. However, several 

other interesting results can be stored, to provide a wider range of information to 

users. 
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Figure 4.3 – Implementation of the single-step correction 

Figure 4.3 presents the implementation of the function to correct the predicted 

increment of displacements by means of second-order single-step methods (also 

known as second-order Runge-Kutta methods). This function was called in line 57 

of the main function, after the predicted increments of load ratio and nodal 

displacements were obtained. The function receives as input arguments, 

respectively, the data structures with model, analysis, and elements information, the 

tangent stiffness matrix evaluated at the beginning of the step, the reference load 

vector, the predicted increment of load ratio, the total displacements, and the 

predicted increment of displacements. It returns the vector of corrected increment 

of displacements for the current step. 

The function gets the weighting coefficients, a1 and a2, and the second 

sampling point position, z2, for the selected method (lines 124 to 132), according 

to Eq. (3.72) and Eq. (3.73). Notice that the position of the first sampling point is 

always zero. The reason is that the tangent stiffness matrix of the beginning of the 
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step is always considered for calculating the average matrix in the implemented 

methods. The nodal displacements of the second sampling point, U_z2, is then 

calculated (lines 135 and 136). The internal forces are evaluated for this level of 

displacements (line 139). Only the vector of elements with updated internal forces 

is returned by the auxiliary function because the global vector of nodal internal 

forces is not needed here. The tangent stiffness matrix of the first sampling point is 

set as the same matrix of the beginning of the step (line 142), and the tangent matrix 

of the second sampling point is evaluated with the corresponding displacements and 

element internal forces (line 143). The average matrix is calculated according to 

Eq. (3.71), in line 146. The corrected increment of displacements is then obtained 

with a linear system using the average matrix and the vector of predicted increment 

of loads. 

4.2.2. Evaluation of the Tangent Stiffness Matrix 

The function to evaluate the tangent stiffness matrix, for a given level of 

displacements and element internal forces, is called at two moments of the main 

algorithm: in the predicted solution and in the corrected solution (of the single-step 

and incremental-iterative methods). The called function is only responsible for 

checking the selected formulation and call the corresponding function that 

implements the code for evaluating the tangent matrix. These implementations are 

shown in Fig. 4.4 for the UL formulation and in Fig. 4.5 for the CR formulation. 

Their input arguments are the data structures with model, analysis, and element 

information, and the vector of total displacements. The outputs are the new tangent 

stiffness matrix and, for the UL implementation, the vector of element data 

structures with the updated elastic stiffness matrix of each element. 

The tangStiffMtxUL function, in Fig. 4.4, starts by initializing the global 

matrix of the structural model with zeros (line 155). Its dimension is the total 

number of degrees-of-freedom (number of equations) of the structure. Next, a loop 

through all elements begins. The tangent stiffness matrix of each element will be 

computed in the local coordinate system, rotated to the global system, and inserted 

into the global matrix. 
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Figure 4.4 – Implementation of the tangent stiffness matrix evaluation for the Updated Lagrangian 

formulation 

For each element, the elastic and geometric stiffness matrices are evaluated 

in auxiliary functions. The function to evaluate the elastic matrix (line 159) must 

implement the expression given in Eq. (2.70). This function receives the vector of 

total displacements as input argument because it needs to calculate the current 

element length for the stiffness coefficients. The function to evaluate the geometric 

stiffness matrix (line 160) implements one of the three types of geometric matrix, 

given in Section 2.3.5.2: Small Rotation 2nd Order (Eq. (2.73)), Large Rotation 2nd 

Order (Eq. (2.76)), or Large Rotation 4th Order (Rodrigues, 2019). This function 

also needs the vector of total displacements to calculate the current element length, 

the analysis options to check the matrix type, and the current element internal 

forces, which are stored in the element data structure. The element tangent matrix, 

in local coordinate system, is then obtained by the sum of the elastic and geometric 

components (line 161). The local elastic stiffness matrix is stored in the element 

data structure (line 164) to be used when computing element internal forces. 
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The current element angle with the horizontal axis is calculated in an auxiliary 

function (line 167). This function has a simple implementation and uses only the 

initial nodal coordinates and the total displacements of nodes. The rotation matrix 

of the element degrees-of-freedom from local to global coordinate system is 

assembled in line 171 using the cosine and sine of the element angle, according to 

Eq. (2.123). Then, the tangent stiffness matrix in local coordinate system is rotated 

to the global system by pre and post multiplying it by the rotation matrix (line 179). 

Finally, the element tangent matrix is inserted into the global matrix using the gather 

vector (line 183), gle, that provides the global number of element degrees-of-

freedom. 

 

Figure 4.5 – Implementation of the tangent stiffness matrix evaluation for the Corotational 

formulation 
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The tangStiffMtxCR function to evaluate the tangent stiffness matrix of the 

CR formulation has a very simple implementation, as shown in Fig. 4.5. Again, it 

starts by initializing the global matrix of the structure (line 189), which will receive 

the contribution of each element tangent matrix computed in the global coordinate 

system. For each element, the internal forces (axial force and bending moments at 

end nodes) are extracted from the element data structure (line 193 to 195). The 

matrix of elastic stiffness coefficients that relates displacements and forces in 

natural system is obtained from an auxiliary function (line 198). This function 

simply returns the constant 3x3 matrix of Eq. (2.93). The transformation matrix 

from natural to global system, given in Eq. (2.114), is assembled in line 206. This 

matrix uses the current element length, returned by an auxiliary function (line 201), 

and the cosine and sine of the element angle with the horizontal axis, also returned 

by an auxiliary function (line 202). The element tangent matrix is computed in line 

214, according to the expression of Eq. (2.146). This matrix is already in the global 

system, and it is inserted into the global matrix using the gather vector (line 222). 

This function could simply implement the final expression of each element tangent 

matrix, given in Eq. (2.147), but it was opted to show it in a more didactic form. 

An important aspect that was omitted in the evaluation of tangent stiffness 

matrices for both UL and CR formulation was the treatment of rotation liberation 

at element ends (hinges). In the FRAMOOP system, this is done by a process of 

static condensation of the rotation degrees-of-freedom of the local tangent matrix. 

Furthermore, the stiffness matrices for Timoshenko beam theory were also 

implemented in FRAMOOP (although it was not presented in this document). 

4.2.3. Evaluation of the Vector of Internal Forces 

The function to evaluate the vector of internal forces, for a given level of 

displacements, also has two implementations, one for each type of nonlinear 

formulation. These implementations are shown in Fig. 4.6 for the UL formulation 

and in Fig. 4.8 for the CR formulation. Their input arguments are the data structures 

with model and element information, the vector of total displacements, and the 

vector of displacement increments (accumulated step increments for the UL 

formulation and iterative increments for CR formulation). The outputs are the 

global vector of internal forces and the vector of elements with updated internal 

forces in local or natural systems. 
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Figure 4.6 – Implementation of the internal forces evaluation for the Updated Lagrangian 

formulation 
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The implementation for the UL formulation starts by initializing the global 

vector of internal forces (line 228). This is a column vector with dimension 

equivalent to the total number of degrees-of-freedom (number of equations) of the 

structure. Then, a loop through all elements is executed to compute the vector of 

internal forces of each element in local system, rotate it to global system, and insert 

it into the global vector. 

In the beginning of the loop, the element elongation, D_L, is calculated (line 

234). It is obtained by the difference between the current element length, L_c, and 

the length at the reference configuration (step beginning), L_r. The current length 

is returned by an auxiliary function that receives the total nodal displacements (line 

233). The length at the beginning of the step was stored in the element data structure 

when an auxiliary function was called in line 10 of the main function. 

After that, the increment of element rotation (rigid-body rotation) from the 

step beginning, rbr, is calculated (line 236). The auxiliary function for this task 

receives the vector of displacement increments, from which the element rotation is 

calculated. The current element angle with the horizontal axis, angle, is then 

obtained (line 238) by adding the increment of rotation to the element angle of the 

step beginning. The current angle is updated in the element data structure (line 241). 

The reason for the incremental approach in obtaining the current element 

angle, instead of simply calculate it using inverse trigonometric functions and 

current nodal coordinates, is that it must account for accumulated rotations over 180 

or even 360 degrees, regardless of its quadrant. An example of a situation that may 

occur is provided in Fig. 4.7. An element is initially described by vector 𝒗12 and 

angle with the horizontal axis β. It passes from the second to the third quadrant, 

where it is describe by vector 𝒗12
′  and angle β’ in the new (current) configuration. 

The current angle is an increased value of the old angle. However, if the current 

angle is calculated using the inverse tangent function (the four-quadrant inverse 

tangent function atan2) and the nodal coordinates, the result is a negative angle. 

Therefore, the adopted solution is to increment the angle in small values, Δβ. 

Special attention should be given to the function that calculates this increment. 

Since the angle increment may be very small, the inverse cosine function acos 

should not be used because it is admittedly inaccurate for small values. The 

implemented expression to calculate the angle between two vectors is also shown. 
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Figure 4.7 – Issue in calculating element rotation angle 

Thereafter, the rotation matrix of the element degrees-of-freedom from local 

to global system is assembled (line 247) using the cosine and sine of the current 

element angle, according to Eq. (2.123). The incremental relative rotations of first 

and second nodes, r1 and r2, are given by the difference between the increment of 

nodal rotations and the rigid-body rotation (lines 255 and 256). A 6x1 vector of 

relative displacements, dl, without rigid-body motions, is assembled with the 

element elongation and the relative rotations (line 259). 

The vector of internal forces increment, D_f, is calculated with the product of 

the elastic stiffness matrix, stored in line 164, and the vector of relative 

displacements (line 262). This increment is added to the vector of total internal 

forces at the step beginning to obtain the total internal forces for the current 

configuration, fl, in the local coordinate system (line 265). The total internal forces 

in the local coordinate system is stored in the element data structure (line 268) to 

be used when evaluating the tangent stiffness matrix. 

The vector of internal forces in the local system is rotated to the global system 

by multiplying it by the rotation matrix (line 271). Finally, the element internal 

forces are inserted into the global vector using the element gather vector (line 275). 
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Figure 4.8 – Implementation of the internal forces evaluation for the Corotational formulation 
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In the implementation of the CR formulation, the first difference is using the 

initial length of each element to compute its total elongation (line 287). The initial 

length, L_0, was stored in the element data structure in the pre-processing stage, 

and the current length, L_c, is calculated with the total displacements. 

The increment of element rotation (rigid-body rotation) from the previous 

iteration, rbr, is calculated with the iterative increment of displacements (line 290). 

The iterative increment of element rotation is then added to the previous element 

angle with horizontal axis to obtain the current element angle (line 294). The 

purpose of this incremental calculation of the current element angle is the same as 

previously explained for the UL implementation. The difference now is that it is 

incremented with iterative values. The total increment of the element rotation angle 

(rigid-body rotation) from the beginning of the analysis, D_angle, is given by the 

difference between the current angle and the initial angle (line 295). The current 

angle is stored in the element data structure (line 298). 

The transformation matrix from natural to global system is assembled 

according to Eq. (2.114) using the cosine and sine of the current element angle (line 

304). The relative rotations of first and second nodes, r1 and r2, are obtained by 

the difference between total nodal rotations and total element rotation (lines 312 

and 313). The 3x1 vector of natural displacements, dn, is assembled with the total 

element elongation and relative nodal rotations (line 316). 

The vector of force components in the natural system (axial force and bending 

moments at end nodes) is given by the product of the matrix of elastic stiffness 

coefficients, Cn, provided in Eq. (2.93), and the vector of natural displacements (line 

320). The resulting natural internal forces are readily stored in the element data 

structure to be used when evaluating the tangent stiffness matrix. The internal forces 

in the natural system are then rotated and expanded to the global system using the 

transformation matrix (line 323). To finish each loop iteration, the internal forces, 

in the global system, are assembled to the global vector (line 327). 

It is notable the similarity between the implementation of the function to 

evaluate internal forces for both formulations. Actually, the UL formulation uses a 

Corotational approach to remove the rigid body motions from the vector of local 

displacements. The non-deformable motions need to be removed from the 

displacements to evaluate internal forces in any nonlinear formulation, as they can 

lead to spurious force values. 
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4.3. Graphical User Interface and Its Functionalities 

Besides the implementation of the geometrically nonlinear analysis algorithm 

in the FRAMOOP system, which is an external library responsible only for the 

analysis process, the Ftool (Two-dimensional Frame Analysis Tool) program 

(Martha, 1999) also needed to be modified in order to receive the new 

functionalities of nonlinear analyses. This section is dedicated to presenting the new 

version of the Ftool program, showing the modifications from a user point of view, 

i.e., the new features in the graphical interface, their purposes, and how to use them. 

The Ftool program (https://www.ftool.com.br) was conceived in 1991, from 

a research project of the Tecgraf Institute of Technical-Scientific Software 

Development of PUC-Rio (Tecgraf/PUC-Rio). It consists of a graphical-interactive 

structural analysis program, based on the direct manipulation of structural models 

via mouse and keyboard. Its main goal is to provide a software that motivates the 

engineering student to learn the theory of structural analysis methods by showing 

how frame models behave in practice. There is no concern to teach the mathematical 

and computational processes for the analysis of these structures. Therefore, Ftool 

needs to be a simple application that brings together, in a single platform, all the 

necessary resources for efficient model creation and manipulation, with attributes 

application (pre-processing), fast and transparent numerical analysis (solver), and 

fast and effective visualization of results (post-processing). This integration of all 

phases of the structural analysis is the fundamental aspect in the learning process, 

providing students with a complete control over the model being analyzed and 

allowing them to quickly experiment different structural conceptions and, thus, 

better understand the behavior of structures. 

Given the purposes of the program, during its creation, it was necessary a data 

structure that was common to all phases of the simulation. The data structure should 

allow the detection of inconsistencies in the model definition, an efficient way to 

register adjacency relations between model entities, and provide efficient geometric 

operators, including the automatic detection of member intersection. The chosen 

data structure is centered on a complete topological representation of a planar 

subdivision, with efficient search for adjacency information based on the theory of 

solid modeling (Mäntylä, 1988), called Half-Edge Data Structure (HED) (Carvalho 

et al., 1990). 
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Moreover, the program must offer a user-friendly graphical interface, with 

intuitive resources. The graphical user interface of the Ftool program is built using 

the IUP (Portable User Interface) system (Levy et al., 1996), developed at 

Tecgraf/PUC-Rio. This system is a multi-platform toolkit that offers a simple API 

(Application Program Interface) with many functions for creating and manipulating 

dialogs and interface elements in different programming languages, including C. It 

is intended to allow the developed software to be executed on various platforms by 

simply recompiling it on the desired platform and linking it with the appropriate 

graphic libraries, without the need to modify the source code, which gives the 

program a high portability. This portability is only possible because IUP uses native 

interface elements of the operating systems. The layout of the interface elements 

within the Ftool dialog is stored in a text file written in LED (Dialog Specification 

Language). The LED file is converted to a C file that is compiled with the rest of 

the Ftool code. 

These described characteristics of the Ftool development are responsible for 

its success in teaching structural engineering over the last decades. It has been used 

on solid mechanics, structural analysis, and structural design courses at many 

universities all over the world. Because of that, it provides the ideal environment 

for the intuitive nonlinear analysis module developed in this work. Thereby, the 

program gains important features that bring more possibilities to be explored in 

academic and professional activities. Despite the advanced concepts involved in the 

nonlinear analysis, Ftool will retain the simplicity features already enshrined in 

previous versions, as its basic purpose remains educational. 

To support this new version, the main window of the program had to be 

modified. Figure 4.9 shows the main dialog of Ftool, highlighting the buttons to 

display the new menus created for this work: Analysis Menu and Plotting Menu. 

When selected, these menus appear along the right side of the screen, and their 

features are described next. 
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Figure 4.9 – Developed menus for performing nonlinear analyses in the Ftool program 

4.3.1. Analysis Options and Parameters 

In the Analysis Menu, users can switch between the linear-elastic analysis 

and the geometrically nonlinear analysis with a drop-down list, entitled Analysis 

Type, that offers both options.  The former is the default option when a new model 

is created. When this option is selected, the Analysis Menu turns empty. In this 

case, the program works as in previous versions, with the analysis being 

automatically performed when a diagram result is requested. On the other hand, 

when the geometrically nonlinear analysis is selected, a series of options and 

parameters show up to be set by users. In this case, the analysis must be launched 

manually before checking the results. The reasons for requesting a manual analysis 

for the nonlinear behavior were given throughout this work: the convergence is not 

always achieved, the results may vary slightly for different methods and parameters 

used, and it is desired to study the history of equilibrium solutions of the structural 

model with an incremental approach. 
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The Analysis Menu is shown in Fig. 4.10. It can be seen that the nonlinear 

analysis options and parameters are organized in two tabs: Options tab (Fig. 4.10a) 

and Parameters tab (Fig. 4.10b). The former is designed to provide a wide range of 

options related to the nonlinear formulation and to the strategies to solve the 

problem. The latter is where analysts can provide the numerical parameters that are 

used by these strategies. 

                

(a)                                                   (b) 

Figure 4.10 – Nonlinear analysis menu showing (a) analysis options and (b) analysis parameters 

In the Options tab, a Formulation panel provides options for the kinematic 

description used to formulate the nonlinear structural problem, which were 

described in Chapter 2: Updated Lagrangian formulation and Corotational 

formulation. In the same panel, the type of geometric stiffness matrix can also be 

selected. If the UL formulation is set as the kinematic description, three options of 

geometric stiffness matrix are available: Small Rotation 2nd Order (Eq. (2.73)), 

Large Rotation 2nd Order (Eq. (2.76)), and Large Rotation 4th Order (Rodrigues, 

2019). On the other hand, if the CR formulation is selected as kinematics, the 

geometric matrix option is locked in Small Rotation 2nd Order, which corresponds 

to the only stiffness matrix developed for this formulation (Eq. (2.147)). 
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A second panel in the Options tab, entitled Solver, contains the options related 

to the strategies to solve the nonlinear problem, which were discussed in Chapter 3. 

In the Solution algorithm pop-up menu, users can select one of the single-step or 

incremental-iterative methods implemented to perform the analysis. The type of 

increment can be set right below the solution method. This option can be set to 

adjusted or constant. The adjusted option automatically modifies the size of the 

predicted increment of load ratio according to the degree of nonlinearity of the 

solution. The constant option does not use the adjustment factor of the methods 

based on the number of iterations to modify the predicted increment, keeping the 

increment of the control parameter with the prescribed value for the entire analysis. 

The last option is the specification of the iteration scheme to be used in incremental-

iterative methods. The available options are the standard and modified versions of 

the Newton-Raphson (N.R.) iteration scheme, which define whether the tangent 

stiffness matrix is updated in all iterations or just at the beginning of the incremental 

step. This option is not available to be set in incremental single-step methods. 

In the Parameters tab, the first input field is the value of the predicted 

increment of load ratio for the first analysis step. If the increment type option is set 

to adjusted, this predicted increment is automatically modified in subsequent steps, 

to optimize the analysis. Otherwise, if the increment type option is set to constant, 

it remains the same in all steps. The next two parameters (limit load ratio and 

maximum number of steps) determine when the analysis will stop. When any of 

these limiting values, of load ratio or steps, is reached, the analysis breaks. It is not 

guaranteed that the solution will be obtained up to these values, as problems related 

convergence, stiffness matrix singularity, and complex numbers can occur earlier. 

Following is the desired number of iterations, which defines the Ni value in Eq. 

(3.32). Since this parameter is only used to adjust the predicted increment size, its 

input field is inactive if the increment type option is set to constant. The last two 

parameters (maximum number of iterations and tolerance) are information for the 

convergence criterion. The former defines the number of iterations to be performed 

within an incremental step to assume that the algorithm failed to converge to an 

equilibrium solution. The latter is the value of the numerical tolerance, variable ε 

used in Eq. (3.74), to assume that an equilibrium configuration has been established. 

Notice that the last three parameters are information related to incremental-iterative 

methods only, so they stay inactive when a single-step method is selected. 
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Below the tabs of options and parameters are the analysis control buttons. 

These buttons allow users to have full control of the nonlinear analysis and perform 

it in an interactive-adaptive fashion. There are four control buttons: Reset, 

Backward, Play, and Forward. 

The Play button runs the analysis up to the maximum number of steps, the 

limit value of load ratio, or the detection of a problem. The analysis only starts if it 

is verified that the model is stable and the attributes have been set correctly. When 

the nonlinear analysis starts, and reaches convergence at least in the first step, the 

program enters in post-processing mode. That is, the modeling options stay blocked 

and users can request any diagram result. The default diagram that is exhibited after 

the analysis stops is the deformed configuration. If a problem is detected before the 

end of the analysis, the result is shown for the last obtained equilibrium 

configuration. The Forward button performs a single step at a time. The Backward 

button is only enabled when at least one analysis step has been successfully 

performed. This button returns the analysis in one step, by cleaning the saved 

information of the removed step. To return a selected number of steps, one can click 

on the desired step number in the analysis feedback at the bottom of the menu and 

then press the Backward button. The Reset button is also enabled only when the 

analysis is running. When clicked, all analysis information is cleaned and the 

program returns to pre-processing mode. A keyboard shortcut has been set for each 

of these control buttons. 

Changes in any of the analysis options and parameters are allowed in between 

steps, so the analysis will resume with the new input data. This possibility to 

perform the analysis in an interactive-adaptive way is an important feature of the 

developed tool. When a non-converging point is found, one can change the 

parameters or use other solution method, in the same analysis, to go beyond that 

point without having to restart the entire process. These options for driving the 

analysis can help even experienced users to work with numerical algorithms, and 

increase their sensitivity on the use of the numerical methods to obtain the nonlinear 

response, allowing studies on the influence of the input parameters to the converged 

solution. The implementation of these control options was done by saving to a 

linked list all the necessary data to start the analysis at any given step, based on the 

history of the results. 
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A step-by-step feedback of the analysis progress is given in a text field at the 

bottom of the Analysis Menu. It dynamically provides the step number, load ratio, 

and number of performed iteration after each increment. 

4.3.2. Plotting Environment 

One of the most important result in a nonlinear analysis is the history of the 

behavior of some variables, especially the relation between the load ratio and the 

displacement of a particular degree-of-freedom in the equilibrium configurations, 

also known as equilibrium path. The best way to show these results is in the form 

of graphs. For this reason, a sophisticated graph-plotting environment was 

developed, where users can create interactive graphs and select between several 

options of data to be plotted in each axis. 

The new plotting area of the Ftool program is developed and managed by an 

additional control of the IUP system called IupPlot, which provides a library of 

functions to deal with graph plotting. The developed menu for creating and 

controlling graphs is shown in Fig. 4.11, with an empty graph. 

  

Figure 4.11 – Plotting Menu showing an empty graph 
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When the Plotting Menu button is clicked, the program enters in plotting 

mode. This mode is a new state of the program in which the canvas, where the 

model is drawn, is replaced with the plotting area; The options of the edit toolbar, 

on the left side of the screen, for the creation and manipulation of models, are 

disabled; The coordinate controls at the bottom of the screen is replaced with graph 

control options; The Plotting menu is displayed on the right side of the screen. 

The menu initially displays a drop-down list with the created graphs, and five 

managing buttons. The graph selected in the drop-down list appears in the plotting 

area. If no graph has been created or the option None is selected, the potting area 

will be blank. 

The first managing button is the New button. When clicked, a few options for 

creating a new graph are displayed: graph label, X-axis data, and Y-axis data (Fig. 

4.12). The label is the string that appears on the graph title. The X and Y-axis data 

are the information that can be plotted on each axis. The available options are nodal 

displacement, load ratio, step number, displacement increment, and load ratio 

increment. The default information is nodal displacement for the X-axis and load 

ratio for the Y-axis, i.e., the conventional graph of equilibrium path. With these 

options, many aspects of the solution can be investigated. For example, one can 

create a graph that shows the relation between the displacements of two degrees-

of-freedom as the analysis goes on, or study the behavior of the load ratio increment 

for each analysis step, and so on. When the new graph is created, it appears empty 

in the plotting area. 

  

Figure 4.12 – Options for creating a new graph 
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The other managing buttons are the Import button, to load a created graph 

from a data file that has been saved, the Rename and Remove buttons, to rename 

and delete the current selected graph, and the Export button, to save the information 

of the current graph to a data file. 

When a created or imported graph is selected from the drop-down list, some 

options appear in the Plotting Menu, below the managing buttons. The first is the 

update type of the current graph. Each graph can be set as static or dynamic. Static 

graphs never change its data while dynamic graphs are automatically updated with 

the ongoing analysis. This means that when the analysis step changes, the graph 

updates its data to be synchronized with the analysis. In addition, the properties of 

the curves of a dynamic graph can be changed at any time. Imported graphs from 

other analysis cannot be set as dynamic. 

Next is the Curve Properties panel, where users can add new curves to the 

current graph by setting their properties. For a curve to be added, a label must be 

provided. Then, the degree-of-freedom for each axis data must be specified by 

providing the node number and selecting one of its three degrees-of-freedom. To 

assist users, when the cursor is placed in the text field to provide the node number, 

the model appears on the screen and the desired node can be picked with a mouse 

click. Depending on the data type, it is not necessary to specify a degree-of-freedom 

for the axis. For example, an axis that plots the value of the load ratio does not need 

the information of a degree-of-freedom, so these options are blocked for that axis. 

Before adding the new curve, the last option to be set is the type of result for 

that curve. Two options can be selected: steps and iterations. The former indicates 

that the curve points correspond only to the converged equilibrium solutions. The 

latter plots the solutions obtained in all iterations, so that users can examine the 

behavior of the iterative cycle within each analysis step of incremental-iterative 

methods. A more in-depth study of the solution algorithms can be done from this 

feature. After setting the curve properties, it can be added to the graph with the Add 

button. When an existing curve is clicked, it is highlighted and its properties appear 

in the Plotting Menu, also enabling the Remove button next to the Add button. As 

commented earlier, if the current graph, to which the selected curve belongs, is 

dynamic, the curve properties can be changed. Otherwise, only its label can be 

modified. 
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The graph control toolbar at the bottom of the screen (Fig. 4.13a) brings 

options to reverse the axes directions, display or hide the grid and legend, swap axes 

data and properties, and open a dialog with all the curves of the current graph, where 

users can select which ones are displayed. In addition, a properties menu (Fig. 

4.13b) can be accessed by right clicking on the graph. In this menu, many visual 

properties of the graph can be set, such as colors, limits, curve thickness, etc. 

  

(a) 

 

(b) 

Figure 4.13 – Graph control toolbar (a) and properties menu (b) 

4.3.3. Diagram Results 

In addition to graph results, usual diagram results of internal forces (axial 

force, shear force, and bending moment) and deformed shape are also provided in 

the geometrically nonlinear analysis. All these diagrams are plotted over the initial 

(undeformed) configuration of the model to ease visualization and interpretation. 

Unlike a linear-elastic analysis, in which the deformed configuration is interpolated 

from nodal displacements using shape functions, the deformed configuration of a 

geometrically nonlinear analysis is drawn with straight lines connecting the 

deformed nodal coordinates. The reason is that the shape functions used in linear 

analyses cannot represent well the nonlinear deformations, leading to erroneous 

deflection modes. 
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5. Numerical Results 

5.1. Introduction 

In this chapter, four benchmark problems are analyzed, each one with a 

distinct nonlinear behavior. The first two problems consist, respectively, of a 

cantilever beam under a vertical point load and a concentrated moment at the tip. 

These models do not present any critical point along the equilibrium path, but some 

interesting aspects of the geometrically nonlinear analysis can be demonstrated with 

them. The third problem is the Williams Toggle Frame, which includes a snap-

through behavior in its solution. Finally, the last problem is the Lee Frame, whose 

solution has the strongest nonlinearities among the analyzed examples, with load 

and displacement limit points in its equilibrium path. 

The analysis of these models has two main goals. One is to validate the results 

obtained by the new version of the Ftool program, based on the analytical or 

numerical solutions for the geometrically nonlinear behavior of the benchmark 

problems. The second is to carry out a study on the performance of the incremental-

iterative methods and the geometrically nonlinear formulations implemented in the 

program to solve the system of equilibrium equations. The solution methods were 

described in Chapter 3, which include 9 incremental-iterative methods. The 

nonlinear formulations were presented in Chapter 2, which are the Updated 

Lagrangian formulations (Small Rotation 2nd Order, Large Rotation 2nd Order, and 

Large Rotation 4th Order) and the Corotational formulation. 

To accomplish the performance evaluation, each solution method is used 

together with each nonlinear formulation, considering different analysis options 

(type of increment and type of iteration scheme) to trace the equilibrium path. Four 

series of analyses are then performed in each example, and their results are grouped 

into tables. These tables consider the following combinations of analysis options to 

solve the problem with all methods and formulations: constant increments with 

standard iteration scheme; constant increments with modified iteration scheme; 

adjusted increments with standard iteration scheme; adjusted increments with 
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modified iteration scheme. The numerical parameters, such as initial increment, 

tolerance for convergence, etc., are the same for all the analyses. 

Remember that the difference between constant and adjusted increments is 

whether or not to use the adjustment factor to automatically modify the size of the 

predicted increment of load ratio according to the degree of nonlinearity of the 

solution. This is valid for the methods in which the increment strategy is based on 

the number of iterations (all but the GDCM), described in Section 3.4.1.1. The 

difference between the standard and modified iteration schemes is whether the 

tangent stiffness matrix is updated in all iterations or just at the beginning of the 

incremental step, as explained in Section 3.3.2. 

The adopted criteria to measure the performance and efficiency of the 

solution methods and nonlinear formulations are based on the number of steps and 

corrective iterations. In each cell of the result tables, the first line indicates, 

respectively, the total number of steps and the total number of corrective iterations 

to complete the analysis. The average number of iterations per step is indicated on 

the second line, between parentheses. Keep in mind that the corrective iterations do 

not include the predicted step. When the solver fails to capture full solution, it is 

indicated by an “X”. The mean values of steps and iterations are also provided, but 

approximated to the nearest integer, and considering only the successfully 

performed analysis of each line or column of the table. 

In addition, some other aspects of geometrically nonlinear analyses are 

worked in the examples. The importance and effects of discretizing each beam 

element is shown for the first two models. It is concluded that, for the implemented 

formulations, a 10-elements discretization is sufficiently fine to match the analytical 

solution of a beam subjected to shear force and bending. The numerical equivalency 

of the nonlinear formulations is also checked for plane beam elements with Euler-

Bernoulli behavior, i.e., the solution obtained with the different formulations are 

numerically the same, what changes is the performance and efficiency when solving 

the problem. A few more results that can be extracted from the Ftool program are 

also shown, including graphs other than the classical curve of the equilibrium path. 

 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



155 

 

5.2. Cantilever Beam with Vertical Tip Load 

The first example is a simple model of a cantilever beam with a vertical load 

at the free end, illustrated in Fig. 5.1. The beam is 1 meter long, the material has a 

modulus of elasticity of E = 107 kN/m2, the cross-section has an area of A = 10-2 m2 

and moment of inertia of I = 10-5 m4, and the magnitude of the applied load is P = 

1000 kN. The displacements and rotation of the degrees-of-freedom of the free node 

(u, v, θ) are also indicated. Euler-Bernoulli bending behavior is assumed. 

 

Figure 5.1 – Cantilever beam with vertical tip load 

The analytical solution for this problem was studied by Bisshopp & Drucker 

(1945) and Mattiasson (1981) using elliptical integrals. The dimensionless results 

of the transcendental elliptical functions are frequently used to validate numerical 

models and they are given in Table 5.1 (Timoshenko & Gere, 1982). 

Table 5.1 – Analytical solution for the cantilever beam with vertical tip load 

PL2/EI u/L v/L 

0.00 0.000 0.000 

0.25 0.004 0.083 

0.50 0.016 0.162 

0.75 0.034 0.235 

1.00 0.056 0.302 

2.00 0.160 0.494 

3.00 0.255 0.603 

4.00 0.329 0.670 

5.00 0.388 0.714 

6.00 0.434 0.744 

7.00 0.472 0.767 

8.00 0.504 0.785 

9.00 0.531 0.799 

10.00 0.555 0.811 
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Initially, a study on the model discretization will be conducted. The results 

will be shown for a 1-element discretization of the beam, which is done in a linear-

elastic analysis without loss of precision, and for a discretization of 10 equal length 

elements to show that nonlinear results depend on model refinement to converge to 

the analytical solution. Furthermore, the numerical equivalency of the 

geometrically nonlinear formulations implemented is verified.  

Figure 5.2 shows the deformed configuration exhibited by the Ftool program 

for different load levels, from the beginning of the analysis to the total load, using 

the two refinements. The corresponding load ratio value of each configuration is 

indicated. The deformed configuration of the single element discretization is drawn 

with a straight line from the deformed position of first and second nodes, while the 

discretized model uses piecewise linear segments between the deformed nodal 

coordinates. The beam discretized by multiple elements better represents the real 

behavior, as it will be proved by the numerical results. Clearly, an expected 

consequence of the poor discretization of this model is that the vertical 

displacement of the free node becomes greater than the analytical solution. 

 

    

(a)                                                                        (b) 

Figure 5.2 – Example 1: Deformed configurations of the cantilever beam with (a) 1-element and 

(b) 10-elements discretization 

The geometrically nonlinear behavior of this model is simple, with a smooth 

equilibrium path that does not present any critical point. As the load increases, the 

structure becomes stiffer, which is caused by tension stiffening of the beam in its 

deformed configuration. 
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The equilibrium paths for the horizontal and vertical displacements of the 1-

element discretized model are shown in Fig. 5.3 and Fig. 5.4, respectively. The 

equilibrium paths for the horizontal and vertical displacements of the 10-elements 

discretization are shown in Fig. 5.5 and Fig. 5.6, respectively. In each graph, the 

results obtained with different nonlinear formulations are compared to the 

analytical solution. For each nonlinear formulation, the equilibrium configurations 

were obtained with the Load Control Method, since there is no load limit point in 

the solution. A constant increment of 0.01, with the standard Newton-Raphson 

iteration scheme and a tolerance of 10-5, were employed to perform the analysis. 

As expected, the results of the poorly discretized model tend to move away 

from the analytical solution as the behavior of the structure leaves the region in 

which it can be considered linear. The 10-elements discretization, on the other hand, 

provides results very close to the analytical solution.  It is also noticed that the 

results for different nonlinear formulations are numerically the same, and their 

curves are overlapping on the graphs. 

The relative error of the 1-element discretization, between the average result 

of the different formulations and the analytical solution, at the last point, is 14.95% 

for the horizontal displacement and 16.15% for the vertical displacement. For the 

10-elements discretization, this error is 0.36% for the horizontal displacement and 

0.98% for the vertical displacement. As commented, the consequence of a bad 

discretization of this model is a larger value of vertical displacements. 

The internal force diagrams corresponding to the application of the total load 

are shown in Fig. 5.7 for both refinements. The diagrams are plotted over the initial 

configuration of the model to help visualization of the results. In the discretized 

model, it can be noted that the free end has a greater normal force and a smaller 

shear force than the fixed end because the applied force (constant vertical direction) 

acts almost in the axial direction of the beam in the final configuration. The bending 

moment at the fixed end is notably smaller than the result expected for a linear 

analysis because the lever arm of the applied load is smaller. 
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Figure 5.3 – Example 1: Horizontal displacement of the free end with a 1-element discretization 

 

 

Figure 5.4 – Example 1: Vertical displacement of the free end with a 1-element discretization 
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Figure 5.5 – Example 1: Horizontal displacement of the free end with a 10-elements discretization 

 

 

Figure 5.6 – Example 1: Vertical displacement of the free end with a 10-elements discretization 
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Figure 5.7 – Internal force diagrams of the cantilever beam with 1-element and 10-elements 

discretization 

The study on the performance of the incremental-iterative methods and the 

nonlinear formulations, when using different analysis options to trace the 

equilibrium path, is presented in Table 5.2 to Table 5.5. The numerical parameters 

used in all analyses are the same: an initial increment of 0.01, a maximum number 

of iterations per step of 500, a tolerance for convergence of 10-5, and a desired 

number of iteration of 3 (when the increment is adjusted). An equally spaced 10-

elements discretization of the beam, which proved to be sufficient for obtaining a 

satisfactory result, is considered in all analyses. The total number of steps and 

corrective iterations to obtain full response with a particular analysis setting are 

provided in each table, as described in the introduction. 
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Table 5.2 – Example 1: Number of steps and iterations for constant increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM 
100 | 190 

(1.90) 

100 | 300 

(3.00) 

100 | 300 

(3.00) 

100 | 122 

(1.22) 

100 | 228 

(2.28) 

WCM 
32 | 95 

(2.97) 

32 | 108 

(3.38) 

32 | 108 

(3.38) 

32 | 61 

(1.91) 

32 | 93 

(2.91) 

ALCM_FNP 
52 | 133 

(2.56) 

54 | 162 

(3.00) 

54 | 162 

(3.00) 

52 | 94 

(1.81) 

53 | 114 

(2.15) 

ALCM_UNP 
52 | 133 

(2.56) 

54 | 162 

(3.00) 

54 | 162 

(3.00) 

52 | 94 

(1.81) 

53 | 114 

(2.15) 

ALCM_CYL 
32 | 95 

(2.97) 

32 | 107 

(3.34) 

32 | 107 

(3.34) 

32 | 42 

(1.31) 

32 | 88 

(2.75) 

ALCM_SPH 
100 | 190 

(1.90) 

100 | 300 

(3.00) 

100 | 300 

(3.00) 

100 | 122 

(1.22) 

100 | 228 

(2.28) 

MNCM 
32 | 95 

(2.97) 

32 | 107 

(3.34) 

32 | 107 

(3.34) 

32 | 42 

(1.31) 

32 | 88 

(2.75) 

ORCM X X X X X 

GDCM 
33 | 98 

(2.97) 

33 | 110 

(3.33) 

33 | 110 

(3.33) 

33 | 42 

(1.27) 

33 | 90 

(2.73) 

Mean 
54 | 129 

(2.39) 

55 | 170 

(3.09) 

55 | 170 

(3.09) 

54 | 77 

(1.43) 

54 | 136 

(2.52) 

 

Table 5.3 – Example 1: Number of steps and iterations for constant increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM 
32 | 256 

(8.00) 

32 | 272 

(8.50) 

32 | 272 

(8.50) 

32 | 270 

(8.44) 

32 | 268 

(8.38) 

ALCM_FNP X X X X X 

ALCM_UNP X X X X X 

ALCM_CYL 
32 | 239 

(7.47) 

32 | 245 

(7.66) 

32 | 245 

(7.66) 

32 | 245 

(7.66) 

32 | 244 

(7.63) 

ALCM_SPH X X X X X 

MNCM 
32 | 239 

(7.47) 

32 | 245 

(7.66) 

32 | 245 

(7.66) 

32 | 244 

(7.63) 

32 | 243 

(7.59) 

ORCM 
27 | 342 

(12.67) 

27 | 353 

(13.07) 

27 | 353 

(13.07) 

27 | 365 

(13.52) 

27 | 353 

(13.07) 

GDCM 
33 | 236 

(7.15) 

33 | 243 

(7.36) 

33 | 243 

(7.36) 

33 | 241 

(7.30) 

33 | 241 

(7.30) 

Mean 
31 | 242 

(7.81) 

31 | 252 

(8.13) 

31 | 252 

(8.13) 

31 | 273 

(8.81) 

31 | 276 

(8.90) 
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Table 5.4 – Example 1: Number of steps and iterations for adjusted increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM 
51 | 140 

(2.75) 

100 | 300 

(3.00) 

100 | 300 

(3.00) 

30 | 71 

(2.37) 

70 | 203 

(2.90) 

WCM 
32 | 95 

(2.97) 

38 | 122 

(3.21) 

38 | 122 

(3.21) 

13 | 32 

(2.38) 

30 | 93 

(3.10) 

ALCM_FNP 
47 | 137 

(2.91) 

54 | 162 

(3.00) 

54 | 162 

(3.00) 

27 | 71 

(2.63) 

46 | 133 

(2.89) 

ALCM_UNP 
47 | 137 

(2.91) 

54 | 162 

(3.00) 

54 | 162 

(3.00) 

27 | 71 

(2.63) 

46 | 133 

(2.89) 

ALCM_CYL 
32 | 95 

(2.97) 

38 | 122 

(3.21) 

38 | 122 

(3.21) 

13 | 30 

(2.31) 

30 | 92 

(3.07) 

ALCM_SPH 
51 | 140 

(2.75) 

100 | 300 

(3.00) 

100 | 300 

(3.00) 

30 | 71 

(2.37) 

70 | 203 

(2.90) 

MNCM 
32 | 95 

(2.97) 

38 | 122 

(3.21) 

38 | 122 

(3.21) 

13 | 30 

(2.31) 

30 | 92 

(3.07) 

ORCM X X X X X 

GDCM 
33 | 98 

(2.97) 

33 | 110 

(3.33) 

33 | 110 

(3.33) 

33 | 42 

(1.86) 

33 | 90 

(2.73) 

Mean 
41 | 117 

(2.85) 

57 | 175 

(3.07) 

57 | 175 

(3.07) 

23 | 52 

(2.26) 

44 | 130 

(2.95) 

 

Table 5.5 – Example 1: Number of steps and iterations for adjusted increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM 
74 | 232 

(3.14) 

72 | 226 

(3.14) 

72 | 226 

(3.14) 

73 | 228 

(3.12) 

73 | 228 

(3.12) 

ALCM_FNP X X X X X 

ALCM_UNP X X X X X 

ALCM_CYL 
69 | 215 

(3.12) 

69 | 216 

(3.13) 

69 | 216 

(3.13) 

69 | 215 

(3.12) 

69 | 216 

(3.13) 

ALCM_SPH X X X X X 

MNCM 
69 | 215 

(3.12) 

69 | 216 

(3.13) 

69 | 216 

(3.13) 

69 | 215 

(3.12) 

69 | 216 

(3.13) 

ORCM 
78 | 248 

(3.18) 

77 | 245 

(3.18) 

77 | 245 

(3.18) 

77 | 245 

(3.18) 

77 | 246 

(3.19) 

GDCM 
33 | 236 

(7.15) 

33 | 243 

(7.36) 

33 | 243 

(7.36) 

33 | 241 

(7.30) 

33 | 241 

(7.30) 

Mean 
65 | 229 

(3.52) 

64 | 229 

(3.58) 

64 | 229 

(3.58) 

64 | 229 

(3.58) 

64 | 229 

(3.58) 
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In all successfully performed analyses, the numerical results obtained with 

different settings were equivalent, i.e., the equilibrium paths for distinct methods, 

formulations, increment and iteration types are all overlapped. However, not all of 

these analysis settings were able to capture full solution, and performance (number 

of steps and iterations) also changes between them. 

In the first tests, using constant increments and standard iterations, the ORCM 

did not work well. In this case, the iterative corrections caused the load ratio to 

explode to a very high value during the fourth step of the analysis. The other 

methods had similar performances, when considering the average number of 

iterations per step. This average has a greater variation for the results from different 

formulations. The CR formulation required the lowest number of iterations to 

complete the analysis, being is the most efficient for this case. 

Using constant increments but with the modified iteration scheme, the LCM, 

ALCM_FNP, ALCM_UNP, and ALCM_SPH were not able to solve the problem. 

These methods could not reach convergence in the first step. On the other hand, the 

ORCM, which failed with the standard scheme, was able to solve the problem, but 

with a higher number of iterations per step than the other methods. The CR 

formulation, which provided the most efficient results for the standard iteration 

scheme, cannot be considered the most advantageous for this case. Furthermore, it 

is observed that, for all the successfully performed analyses, the number of steps is 

the same of the previous table, but more iterations are executed. This is an expected 

result of not updating the tangent stiffness matrix in all iterations. 

In the tests with adjusted increments and standard iterations (Table 5.4), it is 

noted that the number of steps decreased compared to Table 5.2, for the analyzes 

that had an average number of iterations of less than 3 (desired number). The reason 

is that to adjust each step to perform the desired number of iterations, the size of the 

steps had to be larger. The analyzes with an average number of iterations greater 

than 3 (when constant steps were used) had their step size decreased, and 

consequently more steps were performed. Again, the ORCM did not work well, and 

the CR formulation was the most efficient. However, in some cases the number of 

steps performed by the CR formulation was very small, leading to a less smooth 

curve for the equilibrium path. 
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The last tests, combining adjusted increments with modified iterations, show 

that the LCM, ALCM_FNP, ALCM_UNP, and ALCM_SPH keep failing to solve 

the problem. The general number of steps is higher than in the previous table 

because smaller increments are necessary to hold the number of modified iterations 

to the desired value. It is interesting to note that the performance of the methods 

and formulations became more homogeneous. The only discrepancy is the GDCM, 

which uses a different parameter to adjust the increment size that is not based on 

the number of iterations (it uses the GSP parameter). 

Some concluding remarks about this model is that the ORCM does not work 

well when the standard iteration scheme is used. Several other methods are not able 

to solve the problem when the modified iteration scheme is employed. As 

previously mentioned in this work, for increasing stiffness systems, the modified 

iteration scheme is not good (McGuire et al., 2000), which explains why more 

methods have failed with the modified iterations. The CR formulation is more 

efficient than the other formulations, when using the standard iterations. This is not 

true for the modified iteration scheme. It should be noted that, in all analyses, the 

performance of the ALCM_FNP and ALCM_UNP were the same, as well as the 

performance of the LR2O and LR4O formulations. 

Some other interesting results that can be obtained from the new version of 

the Ftool program are shown next. These results were obtained for a 10-elements 

discretization, analyzed with the LCM, a constant increment of 0.01, and the 

standard iteration scheme. Fig. 5.8 shows the graph-plotting environment with a 

chart of the relation between the horizontal and vertical displacements (red), 

horizontal displacement and rotation (blue), and vertical displacement and rotation 

(green) of the free end of the beam. Figures 5.9 and 5.10 provide the values of the 

displacements and rotation of the beam tip as well as the increment of these 

quantities for each analysis step. Notably, the curves of Fig. 5.9 represent the 

tangent of the curves of Fig. 5.10. Finally, in Fig. 5.11, a portion of the equilibrium 

path, with three converged equilibrium configurations, is shown with the results for 

each iteration of the LCM. Clearly, a load increment is given at each step and kept 

constant at each iteration. 
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Figure 5.8 – Relation between nodal displacements and rotation 

 

Figure 5.9 –Nodal displacements and rotation for each step 
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Figure 5.10 –Increments of nodal displacements and rotation for each step 

 

Figure 5.11 –Equilibrium path showing incremental and iterative results 
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5.3. Cantilever Beam with End Moment 

The second example deals with the same model of the previous section. 

However, instead of a vertical load, a concentrated bending moment, M, is applied 

at the tip of the cantilever beam. The beam is illustrated in Fig. 5.12, with its 

physical and geometric properties provided and the displacements and rotation of 

the free end indicated. 

 

Figure 5.12 – Cantilever beam with end moment 

This problem has been analyzed by a number of researchers in order to test 

new nonlinear formulations and solution methods under extreme bending. The 

exact solution for the deformed shape of this model is a perfect circle, since the 

bending moment, and hence the curvature, is constant along the beam. The 

analytical solution for this problem is given in Eq. (5.1) to Eq. (5.3) (Almeida et al., 

2011). When the bending moment reaches the value of M = 2π(EI/L), the beam is 

rolled up into a circle. 

ML

EI
 

 

(5.1) 

sin
1u L

 
  

 

 

(5.2) 

1 cos
v L

  
  

 

 

(5.3) 

The objective of this example is to illustrate the ability of the nonlinear 

formulations to handle very large rotations, as long as the structural members are 

subdivided into small elements. Figure 5.13 illustrates the cantilever beam 

discretized with 1 and 10 elements, subjected to twice the moment necessary to roll 

it according to the analytical solution. Clearly, a good discretization is fundamental 

to simulate the nonlinear behavior. 
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(a) 

 

 

(b) 

Figure 5.13 – Example 2: Deformed configurations of the cantilever beam with (a) 1-element and 

(b) 10-elements discretization 

The geometrically nonlinear behavior of this model has no load limit point. 

Therefore, using the LCM, the equilibrium paths for the horizontal and vertical 

displacements at the tip of the beam, discretized with 10 elements, are shown in 

Fig. 5.14 and Fig. 5.15, respectively. In each graph, the results obtained with 

different formulations are compared with good agreement to the analytical solution. 

Again, it is checked that the nonlinear formulations are numerically equivalent for 

this type of problem, and a discretization of the beam into 10 elements is sufficiently 

fine. However, efficiency is not the same for each formulation. 

In the sequence, Table 5.6 to Table 5.9 bring a study on the performance of 

the incremental-iterative methods and the formulations to solve this problem when 

different types of increment and iteration schemes are considered. An initial 

increment of 0.01, a maximum number of iterations per step of 500, a tolerance for 

convergence of 10-5, and a desired number of iteration of 3 (when the increment is 

adjusted) are employed for all analyzes. 
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Figure 5.14 – Example 2: Horizontal displacement of the free end with a 10-elements 

discretization 

 

Figure 5.15 – Example 2: Vertical displacement of the free end with a 10-elements discretization 

 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



170 

 

Table 5.6 – Example 2: Number of steps and iterations for constant increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM 
100 | 300 

(3.00) 

100 | 490 

(4.90) 

100 | 490 

(4.90) 

100 | 200 

(2.00) 

100 | 370 

(3.70) 

WCM 
100 | 300 

(3.00) 

88 | 412 

(4.68) 

88 | 412 

(4.68) 

100 | 200 

(2.00) 

94 | 331 

(3.52) 

ALCM_FNP 
99 | 296 

(2.99) 
X X 

99 | 197 

(2.99) 

99 | 247 

(2.49) 

ALCM_UNP 
99 | 296 

(2.99) 
X X 

99 | 197 

(2.99) 

99 | 247 

(2.49) 

ALCM_CYL 
98 | 292 

(2.98) 

98 | 473 

(4.83) 

98 | 473 

(4.83) 

98 | 195 

(1.99) 

98 | 358 

(3.65) 

ALCM_SPH 
100 | 300 

(3.00) 

100 | 490 

(4.90) 

100 | 490 

(4.90) 

100 | 200 

(2.00) 

100 | 370 

(3.70) 

MNCM 
98 | 294 

(3.00) 

99 | 479 

(4.84) 

99 | 479 

(4.84) 

98 | 196 

(2.00) 

99 | 362 

(3.66) 

ORCM X X X X X 

GDCM 
98 | 292 

(2.98) 

98 | 473 

(4.83) 

98 | 473 

(4.83) 

98 | 195 

(1.99) 

98 | 358 

(3.65) 

Mean 
99 | 296 

(2.99) 

97 | 470 

(4.85) 

97 | 470 

(4.85) 

99 | 198 

(2.00) 

98 | 342 

(3.49) 

 

Table 5.7 – Example 2: Number of steps and iterations for constant increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM 
100 | 1101 

(11.01) 
X X 

100 | 1101 

(11.01) 

100 | 1101 

(11.01) 

ALCM_FNP X X X X X 

ALCM_UNP X X X X X 

ALCM_CYL 
98 | 682 

(6.96) 

98 | 824 

(8.41) 

98 | 824 

(8.41) 

98 | 682 

(6.96) 

98 | 753 

(7.68) 

ALCM_SPH X X X X X 

MNCM 
98 | 682 

(6.96) 

98 | 821 

(8.38) 

98 | 821 

(8.38) 

98 | 682 

(6.96) 

98 | 752 

(7.67) 

ORCM X X X X X 

GDCM 
98 | 683 

(6.97) 

98 | 821 

(8.38) 

98 | 821 

(8.38) 

98 | 683 

(6.97) 

98 | 752 

(7.67) 

Mean 
99 | 787 

(7.95) 

98 | 822 

(8.39) 

98 | 822 

(8.39) 

99 | 787 

(7.95) 

98 | 802 

(8.18) 
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Table 5.8 – Example 2: Number of steps and iterations for adjusted increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM 
100 | 300 

(3.00) 

1429 | 4329 

(3.03) 

1429 | 4329 

(3.03) 

29 | 76 

(2.62) 

747 | 2259 

(3.02) 

WCM 
100 | 300 

(3.00) 

385 | 1218 

(3.16) 

385 | 1218 

(3.16) 

27 | 69 

(2.56) 

224 | 701 

(3.13) 

ALCM_FNP 
99 | 296 

(2.99) 
X X 

29 | 76 

(2.62) 

64 | 186 

(2.91) 

ALCM_UNP 
99 | 296 

(2.99) 
X X 

29 | 76 

(2.62) 

64 | 186 

(2.91) 

ALCM_CYL 
98 | 292 

(2.98) 

420 | 1284 

(3.06) 

420 | 1284 

(3.06) 

26 | 66 

(2.54) 

241 | 732 

(3.04) 

ALCM_SPH 
100 | 300 

(3.00) 

1428 | 4326 

(3.03) 

1428 | 4326 

(3.03) 

29 | 76 

(2.62) 

746 | 2257 

(3.03) 

MNCM 
98 | 294 

(3.00) 

420 | 1283 

(3.05) 

420 | 1283 

(3.05) 

27 | 69 

(2.56) 

241 | 732 

(3.04) 

ORCM X X X X X 

GDCM 
98 | 292 

(2.98) 

98 | 473 

(4.83) 

98 | 473 

(4.83) 

98 | 195 

(1.99) 

98 | 358 

(3.65) 

Mean 
99 | 296 

(2.99) 

696 | 2152 

(3.09) 

696 | 2152 

(3.09) 

37 | 88 

(2.38) 

337 | 1032 

(3.06) 

 

Table 5.9 – Example 2: Number of steps and iterations for adjusted increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM 
298 | 908 

(3.05) 

461 | 1440 

(3.12) 

461 | 1440 

(3.12) 

298 | 908 

(3.05) 

380 | 1174 

(3.09) 

ALCM_FNP X X X X X 

ALCM_UNP X X X X X 

ALCM_CYL 
255 | 775 

(3.04) 

388 | 1184 

(3.05) 

388 | 1184 

(3.05) 

255 | 775 

(3.04) 

322 | 980 

(3.04) 

ALCM_SPH X X X X X 

MNCM 
255 | 775 

(3.04) 

388 | 1184 

(3.05) 

388 | 1184 

(3.05) 

255 | 775 

(3.04) 

322 | 980 

(3.04) 

ORCM 
359 | 1101 

(3.07) 

488 | 1493 

(3.06) 

488 | 1493 

(3.06) 

361 | 1108 

(3.07) 

424 | 1112 

(2.62) 

GDCM 
98 | 683 

(6.97) 

98 | 821 

(8.38) 

98 | 821 

(8.38) 

98 | 683 

(6.97) 

98 | 752 

(7.67) 

Mean 
253 | 848 

(3.35) 

365 | 1224 

(3.35) 

365 | 1224 

(3.35) 

253 | 850 

(3.36) 

309 | 1037 

(3.36) 
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Using constant increments and standard iterations, the ORCM failed to obtain 

the solution because of the same problem presented in the previous example: the 

iterative corrections cause the load ratio to explode to a very high value during the 

fourth step. The ALCM_FNP and ALCM_UNP, using the formulations LR2O and 

LR4O, were able to follow the solution up to a load ratio of 0.91, but were stuck at 

this point. The LR2O and LR4O formulations also needed more iterations per step 

to complete the analysis when other methods were used. The CR formulation is the 

most efficient for this case because it required the lowest number of iterations in 

each step. 

By changing the iteration scheme to the modified version, only the 

ALCM_CYL, MNCM, and GDCM were able to capture full solution using all 

formulations. The WCM solved the problem with the SR2O and CR formulations, 

but with a higher number of iterations than other methods. As expected, the number 

of iterations of all analyses was increased compared to the tests with the standard 

iteration scheme. 

Considering an adjusted increment, it can be observed that the analyzes with 

the LR2O and LR4O formulations are less efficient, since the step sizes to honor 

the desired number of iterations need to be very small. The CR formulation turns to 

be the best choice in this case, as it requires much fewer steps and iterations for 

each solution method. The same problems experienced by the ALCM_FNP, 

ALCM_UNP, and ORCM in the tests of Table 5.6, also occur with the adjusted 

increment. 

When the adjusted increment and the modified iteration scheme are 

employed, the WCM can be used with the LR2O and LR4O formulations, which is 

not possible when the modified iterations are performed with constant increments. 

Furthermore, the ORCM can be used without problems. However, these analysis 

settings provide a larger number of steps and total iterations when compared to the 

previous tests. 

In all analyzes of this model, the same performance was registered by the 

ALCM_FNP and ALCM_UNP methods and by the LR2O and LR4O formulations. 

These formulations, however, presented more convergence problems and required 

more iterations to reach the final solution. The ALCM_CYL, MNCM, and GDCM 

were the only methods that did not have any trouble to solve the problem with any 

nonlinear formulation. 
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5.4. Williams Toggle Frame 

The Williams Toggle Frame is a low-rise arch composed of two beams with 

clamped ends and a vertical concentrated load applied at the apex. Figure 5.16 

illustrates the out-of-scale model for easy viewing of dimensions. The arch has a 

span of 65.715 cm and a height of 0.98 cm. The material of the beams has a modulus 

of elasticity of E = 199714 MPa, the cross-section is circular with a diameter of 

0.721 cm, and the magnitude of the applied load is P = 0.25 kN. The positive 

direction of the vertical displacement of the apex, v, which is the only effective 

degree-of-freedom, is also indicated. Euler-Bernoulli bending behavior is assumed. 

 

Figure 5.16 – Williams Toggle Frame 

This model was first investigated by Williams (1964), who treated the frame 

both analytically and experimentally taking into account finite changes in geometry. 

Despite being a simple model, it has a highly nonlinear response. Depending on its 

dimensions, it exhibits load limit points with snap-through behavior. Therefore, this 

example has the intention to demonstrate the ability of the implemented methods to 

capture this type of nonlinear behavior. 

Figure 5.17 shows the equilibrium path of the Williams Toggle Frame, 

considering a discretization of each beam into 10 equal length elements. The results 

of the MASTAN program (McGuire et al., 2000) are compared to the results of the 

Ftool program. The continuation method available in the MASTAN program is the 

WCM, which is able to capture the solution beyond load limit points and matches 

with good accuracy the results provided by the Ftool program using the same 

method. It is also shown the equilibrium path obtained with the Ftool program using 

the LCM. As expected, this method cannot capture full solution. When the load 

ratio exceeds the first load limit point, the method will either diverge or snap 

through the unstable behavior to find another equilibrium configuration 

corresponding to the new load level, as illustrated. 
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Figure 5.17 – Equilibrium path of the Williams Toggle Frame 

As in the previous examples, the results obtained for the equilibrium 

configurations, using different methods, formulations, and analysis options, are 

numerically the same in all the analyses that successfully trace the equilibrium path. 

The difference lies only on the number of steps and iterations. 

The performance evaluation of the solution methods and geometrically 

nonlinear formulations implemented in the Ftool program is found in Table 5.10 to 

Table 5.13. The numerical parameters for all analyses are the same as those used in 

the previous examples: initial increment of 0.01, maximum number of iterations per 

step of 500, tolerance for convergence of 10-5, and desired number of iteration of 3 

(when the increment is adjusted). In the following tables, an asterisk indicates when 

the solution could be obtained up to the total applied load, but snapping through the 

unstable region of the equilibrium path. 
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Table 5.10 – Example 3: Number of steps and iterations for constant increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM 
100 | 157 

(1.57)* 

100 | 127 

(1.27)* 

100 | 127 

(1.27)* 

100 | 133 

(1.33)* 

100 | 136 

(1.36) 

WCM X 
214 | 215 

(1.00) 

188 | 189 

(1.01) 

162 | 162 

(1.00) 

188 | 189 

(1.00) 

ALCM_FNP 
291 | 290 

(1.00) 

293 | 293 

(1.00) 

293 | 293 

(1.00) 

237 | 237 

(1.00) 

279 | 278 

(1.00) 

ALCM_UNP 
291 | 290 

(1.00) 

293 | 293 

(1.00) 

293 | 293 

(1.00) 

237 | 237 

(1.00) 

279 | 278 

(1.00) 

ALCM_CYL 
389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

ALCM_SPH 
154 | 154 

(1.00) 

154 | 154 

(1.00) 

154 | 154 

(1.00) 

154 | 154 

(1.00) 

154 | 154 

(1.00) 

MNCM 
389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

ORCM 
397 | 397 

(1.00) 

394 | 394 

(1.00) 

394 | 394 

(1.00) 

388 | 388 

(1.00) 

393 | 393 

(1.00) 

GDCM 
388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

Mean 
300 | 307 

(1.02) 

290 | 294 

(1.01) 

287 | 291 

(1.01) 

272 | 275 

(1.01) 

287 | 291 

(1.01) 

 

Table 5.11 – Example 3: Number of steps and iterations for constant increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM X 
225 | 262 

(1.16) 

208 | 262 

(1.26) 

149 | 202 

(1.36) 

194 | 242 

(1.25) 

ALCM_FNP 
290 | 380 

(1.31) 

293 | 391 

(1.33) 

293 | 391 

(1.33) 

237 | 279 

(1.18) 

278 | 360 

(1.29) 

ALCM_UNP 
290 | 380 

(1.31) 

293 | 391 

(1.33) 

293 | 391 

(1.33) 

237 | 279 

(1.18) 

278 | 360 

(1.29) 

ALCM_CYL 
389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

ALCM_SPH 
154 | 298 

(1.94) 

154 | 299 

(1.94) 

154 | 299 

(1.94) 

154 | 294 

(1.91) 

154 | 298 

(1.94) 

MNCM 
389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

389 | 389 

(1.00) 

ORCM 
400 | 400 

(1.00) 

400 | 400 

(1.00) 

400 | 400 

(1.00) 

388 | 388 

(1.00) 

397 | 397 

(1.00) 

GDCM 
388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

Mean 
329 | 375 

(1.14) 

316 | 364 

(1.15) 

314 | 364 

(1.16) 

291 | 326 

(1.12) 

312 | 356 

(1.14) 
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Table 5.12 – Example 3: Number of steps and iterations for adjusted increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM 
21 | 150 

(7.14)* 

17 | 46 

(2.71)* 

17 | 46 

(2.71)* 

16 | 31 

(1.94)* 

18 | 68 

(3.78) 

WCM X 
20 | 38 

(1.90) 

20 | 38 

(1.90) 

15 | 23 

(1.53) 

18 | 33 

(1.83) 

ALCM_FNP 
22 | 47 

(2.14) 

21 | 44 

(2.10) 

21 | 44 

(2.10) 

19 | 36 

(1.89) 

21 | 43 

(2.05) 

ALCM_UNP 
22 | 47 

(2.14) 

21 | 44 

(2.10) 

21 | 44 

(2.10) 

19 | 35 

(1.84) 

21 | 43 

(2.05) 

ALCM_CYL 
21 | 40 

(1.90) 

21 | 40 

(1.90) 

21 | 40 

(1.90) 

17 | 24 

(1.41) 

20 | 36 

(1.80) 

ALCM_SPH 
20 | 44 

(2.20) 

19 | 40 

(2.11) 

19 | 40 

(2.11) 

18 | 35 

(1.94) 

19 | 40 

(2.11) 

MNCM 
21 | 40 

(1.90) 

21 | 40 

(1.90) 

21 | 40 

(1.90) 

17 | 24 

(1.41) 

20 | 36 

(1.80) 

ORCM 
34 | 59 

(1.74) 

22 | 42 

(1.91) 

22 | 42 

(1.91) 
X 

26 | 48 

(1.85) 

GDCM 
388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

Mean 
69 | 102 

(1.48) 

61 | 80 

(1.31) 

61 | 80 

(1.31) 

64 | 75 

(1.17) 

63 | 84 

(1.33) 

 

Table 5.13 – Example 3: Number of steps and iterations for adjusted increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM 
34 | 101 

(2.97) 

48 | 130 

(2.71) 

48 | 130 

(2.71) 

47 | 156 

(3.32) 

44 | 130 

(2.95) 

ALCM_FNP 
75 | 215 

(2.87) 

77 | 222 

(2.88) 

77 | 222 

(2.88) 

73 | 210 

(2.88) 

76 | 217 

(2.86) 

ALCM_UNP 
74 | 214 

(2.89) 

77 | 222 

(2.88) 

77 | 222 

(2.88) 

73 | 210 

(2.88) 

75 | 217 

(2.89) 

ALCM_CYL 
62 | 172 

(2.77) 

63 | 174 

(2.76) 

63 | 174 

(2.76) 

62 | 171 

(2.76) 

63 | 173 

(2.75) 

ALCM_SPH 
71 | 206 

(2.90) 

71 | 207 

(2.92) 

71 | 207 

(2.92) 

70 | 203 

(2.90) 

71 | 206 

(2.90) 

MNCM 
62 | 172 

(2.77) 

63 | 174 

(2.76) 

63 | 174 

(2.76) 

62 | 171 

(2.76) 

63 | 173 

(2.75) 

ORCM 
64 | 183 

(2.86) 
X X 

62 | 172 

(2.77) 

63 | 178 

(2.83) 

GDCM 
388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

388 | 388 

(1.00) 

Mean 
104 | 206 

(1.98) 

112 | 217 

(1.94) 

112 | 217 

(1.94) 

105 | 210 

(2.00) 

108 | 212 

(1.96) 
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Considering constant increments with standard iterations, the LCM is able to 

reach the final equilibrium configuration, but snapping through the unstable 

configurations, as in Fig. 5.17. A large number of iterations is performed to find a 

new solution after the load limit point is reached (43 with SR2O, 12 with LR2O and 

LR4O, and 21 with CR). The WCM was not able to solve the problem with the 

SR2O formulation. It goes well until a point at about halfway the end of the 

analysis, where it stops incrementing and gets stuck. In general, all other methods 

and formulations had similar performances for this model and analysis settings. The 

initial increment of the analysis is small for this model, resulting in an average 

number of iterations per step of 1.00. A larger initial increment, or the use of 

adjusted increments, would be more efficient. 

When the modified iteration scheme is used (Table 5.11), few differences are 

experienced, since the increment is small. One of them is that the LCM is not able 

to find a new solution after reaching the load limit point, diverging from the 

equilibrium path. Some of the other methods had their average number of iterations 

slightly increased, but the overall performance was quite homogeneous. 

In analyzes with adjusted increments and standard iterations, the LCM 

captured the solution jumping over the unstable region. A common issue for most 

of these analyses is that a non-smooth curve was obtained due to large increments 

in each step, especially when the WCM method or the CR formulation was selected. 

A reason for this is that the desired number of iterations may be too large for this 

problem. Decreasing it would be the best option for getting a smooth curve with a 

reasonable number of steps. This issue did not occur with the GDCM, which is not 

based on the number of iteration, but on the GSP, to adjust the increment size. 

Finally, running analyzes with adjusted increments and modified iterations 

resulted in smoother curves than those obtained in the tests of Table 5.12, but with 

less steps and total iterations needed by the analyzes of Table 5.10 and Table 5.11. 

The ORCM, however, failed to converge near the first load limit point when using 

the LR2O and LR4O formulations. The LCM also diverged when the load limit 

point was reached. 
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5.5. Lee Frame 

The Lee Frame is a two-beam model, rigidly connected to each other in a 90-

degree angle and simply supported at the other end, as illustrated in Fig. 5.18. Each 

beam is 120 cm long and is discretized into 10 equal length elements for this 

example. Euler-Bernoulli bending behavior is assumed. The material has a modulus 

of elasticity of E = 70632 MPa, the cross-section has an area of A = 6.0 cm2 and a 

moment of inertia of I = 2.0 cm4. A vertical point load is applied 24 cm from the 

joint, with a magnitude of P = 20 kN. The positive directions of the displacements 

and rotation of the loaded node (u, v, θ) are also indicated in the figure. 

 

Figure 5.18 – Lee frame 

This model is a well-known example for evaluating nonlinear solvers, since 

its behavior is highly nonlinear and the equilibrium path includes both snap-through 

and snap-back. It was first studied and solved by Lee et al. (1968). The finite 

element solution for the Lee Frame with the physical and geometric properties 

presented in Fig. 5.18 is given in Table 5.14 (Cichon, 1984). 
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Table 5.14 –Solution of the Lee Frame 

P [kN] u [cm] v [cm] 

0.0000 0.0000 0.0000 

4.9033 0.3102 3.7514 

12.7378 4.5534 18.2120 

17.0194 14.5370 35.9240 

18.3815 25.4490 47.0730 

13.2291 57.3590 60.3470 

-0.7074 79.6120 52.8500 

-9.6871 90.3140 58.2570 

2.6526 88.9740 87.6070 

14.2157 86.1990 91.8670 

 

The expected solution is compared to the results obtained with the Ftool 

program. Figure 5.19 shows the equilibrium path for the horizontal displacement of 

the loaded node, while Fig. 5.20 shows the equilibrium path for the vertical 

displacement. These results were obtained for the 10-elements discretization of 

beams and match with good accuracy the solution given by Cichon (1984). Two 

load limit points are identified, a maximum at the load ratio of λ = 0.92, and a 

minimum at the load ratio of λ = -0.47. A displacement limit point, with snap-back 

behavior, is also identified in the equilibrium path of the vertical displacement. 

The deformed configurations at different points of the equilibrium path are 

shown in Fig. 5.21, with the corresponding load ratio values provided next to each 

deformed shape. The bold values indicate the equilibrium configurations 

corresponding to a load limit point. 

The internal force diagrams (axial force, shear force, and bending moment), 

provided by the Ftool program, are given in Fig. 5.22. These internal forces 

correspond to the total applied load and the diagrams are plotted over the initial 

configuration of the model to help visualization of the results. 

The comparative study of the efficiency and performance of the solution 

methods, using different formulations and analysis options, is presented in Table 

5.15 to Table 5.18. An initial increment of 0.01, a maximum number of iterations 

per step of 500, a tolerance for convergence of 10-5, and a desired number of 

iteration of 3 (when the increment is adjusted) were employed in all analyses. 
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Figure 5.19 – Equilibrium path for the horizontal displacement 

 

Figure 5.20 – Equilibrium path for the vertical displacement 
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Figure 5.21 – Deformed configurations of the Lee Frame 

              

      (a)                                                                 (b) 

 

(c) 

Figure 5.22 – Internal force diagrams of the Lee Frame: (a) axial force, (b) shear force, and (c) 

bending moment 
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Table 5.15 – Example 4: Number of steps and iterations for constant increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM X X X X X 

ALCM_FNP X X X X X 

ALCM_UNP X X X X X 

ALCM_CYL 
1015 | 1597 

(1.57) 

1015 | 1790 

(1.76) 

1015 | 1790 

(1.76) 

1015 | 1015 

(1.00) 

1015 | 1548 

(1.53) 

ALCM_SPH  X X X X X 

MNCM 
1083 | 1666 

(1.54) 

1085 | 1872 

(1.73) 

1085 | 1873 

(1.73) 

1017 | 1017 

(1.00) 

1068 | 1607 

(1.50) 

ORCM X X X X X 

GDCM 
1014 | 1598 

(1.58) 

1014 | 1787 

(1.76) 

1014 | 1787 

(1.76) 

1015 | 1015 

(1.00) 

1014 | 1547 

(1.53) 

Mean 
1037 | 1620 

(1.56) 

1038 | 1816 

(1.75) 

1038 | 1817 

(1.75) 

1016 | 1016 

(1.00) 

1032 | 1567 

(1.52) 

 

Table 5.16 – Example 4: Number of steps and iterations for constant increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM X X X X X 

ALCM_FNP X X X X X 

ALCM_UNP X X X X X 

ALCM_CYL 
1015 | 4543 

(4.48) 

1015 | 4607 

(4.54) 

1015 | 4608 

(4.54) 

1015 | 4502 

(4.44) 

1015 | 4565 

(4.50) 

ALCM_SPH X X X X X 

MNCM 
1001 | 4528 

(4.52) 

1000 | 4596 

(4.60) 

1000 | 4596 

(4.60) 

1013 | 4494 

(4.44) 

1004 | 4554 

(4.54) 

ORCM X X X X X 

GDCM 
1014 | 4525 

(4.46) 

1014 | 4580 

(4.52) 

1014 | 4580 

(4.52) 

1015 | 4491 

(4.42) 

1014 | 4544 

(4.48) 

Mean 
1010 | 4532 

(4.49) 

1010 | 4594 

(4.55) 

1010 | 4595 

(4.55) 

1014 | 4496 

(4.43) 

1011 | 4554 

(4.50) 
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Table 5.17 – Example 4: Number of steps and iterations for adjusted increments with standard 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM X X X X X 

ALCM_FNP 
348 | 1026 

(2.95) 

402 | 1187 

(2.95) 

400 | 1180 

(2.95) 

210 | 624 

(2.97) 

340 | 1004 

(2.95) 

ALCM_UNP 
246 | 761 

(3.09) 
X 

239 | 779 

(3.26) 

196 | 593 

(3.03) 

227 | 711 

(3.13) 

ALCM_CYL 
181 | 533 

(2.94) 

207 | 611 

(2.95) 

207 | 611 

(2.95) 

109 | 311 

(2.85) 

176 | 517 

(2.94) 

ALCM_SPH X X X X X 

MNCM 
191 | 561 

(2.94) 

222 | 655 

(2.95) 

222 | 655 

(2.95) 

106 | 303 

(2.86) 

185 | 544 

(2.94) 

ORCM X X X X X 

GDCM 
1014 | 1598 

(1.58) 

1014 | 1787 

(1.76) 

1014 | 1787 

(1.76) 

1015 | 1015 

(1.00) 

1014 | 1547 

(1.53) 

Mean 
396 | 896 

(2.26) 

461 | 1060 

(2.30) 

416 | 1002 

(2.41) 

327 | 569 

(1.74) 

397 | 872 

(2.20) 

 

Table 5.18 – Example 4: Number of steps and iterations for adjusted increments with modified 

iteration scheme 

 SR2O LR2O LR4O CR Mean 

LCM X X X X X 

WCM X X X X X 

ALCM_FNP 
2989 | 8854 

(2.96) 

3195 | 9457 

(2.96) 

3194 | 9454 

(2.96) 

2572 | 7725 

(3.00) 

2988 | 8873 

(2.97) 

ALCM_UNP 
2964 | 8780 

(2.96) 

3172 | 9390 

(2.96) 

3179 | 9410 

(2.96) 

2545 | 7646 

(3.00) 

2965 | 8807 

(2.97) 

ALCM_CYL 
1567 | 4705 

(3.00) 

1625 | 4881 

(3.00) 

1625 | 4881 

(3.00) 

1437 | 4315 

(3.00) 

1564 | 4696 

(3.00) 

ALCM_SPH 
2941 | 8830 

(3.00) 

2962 | 8896 

(3.00) 

2962 | 8896 

(3.00) 

2646 | 7948 

(3.00) 

2878 | 8643 

(3.00) 

MNCM 
1605 | 4820 

(3.00) 

1583 | 4756 

(3.00) 

1583 | 4755 

(3.00) 

1433 | 4304 

(3.00) 

1551 | 4659 

(3.00) 

ORCM X X X X X 

GDCM 
1014 | 4525 

(4.46) 

1014 | 4580 

(4.52) 

1014 | 4580 

(4.52) 

1015 | 4491 

(4.42) 

1014 | 4544 

(4.48) 

Mean 
2180 | 6752 

(3.10) 

2259 | 6993 

(3.10) 

2260 | 6996 

(3.10) 

1941 | 6072 

(3.13) 

2160 | 6703 

(3.10) 
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Only three methods worked well for the analysis of the Lee Frame by means 

of constant increments and the standard iteration scheme: ALCM_CYL, MNCM, 

and GDCM. A large number of steps was executed by these methods to complete 

the analysis, which indicates that the prescribed increment may be too small. These 

methods are more efficiently performed when the CR formulation is selected, since 

less iterations are required for a similar number of steps. The other methods faced 

numerical instability problems. Some expected problems that occurred were the 

struggles of the LCM to handle load limit points and the WCM to deal with 

displacement limit points, as explained earlier in this work. 

The main effect of considering the modified iteration scheme to the analyzes 

with constant increments is the increase in the number of iterations per step. In this 

case, it is also verified that the CR formulation is no longer as advantageous as in 

the case of standard iterations. 

Considering adjusted increments with standard iterations, both the 

ALCM_FNP and the ALCM_UNP become able to solve the problem. The latter, 

however, fails when using the LR2O formulation. The other methods that are based 

on the number of iterations to adjust the increment size had their number of steps 

decreased, making analysis more efficient. The CR formulation, again, happen to 

be the best choice between the nonlinear formulations, considering its low number 

of iterations in each step. 

Finally, Table 5.18 shows the results of the analyzes with adjusted increments 

and modified iterations. These analysis options allowed more methods to solve the 

problem, despite the enormous number of steps required. The ORCM, together with 

the LCM and WCM, were the only methods that did not work well for this problem, 

considering any nonlinear formulation or analysis option. 

For the next results, the ALCM_CYL was used with constant increments of 

0.01 and standard iterations, totaling 1015 steps. The behavior of nodal 

displacements and applied load ratio throughout the analysis is investigated 

separately. Figures 5.23 and 5.24 show the value and the increment of horizontal 

(red) and vertical (blue) displacements of the loaded node in each analysis step. 

Figures 5.25 and 5.26 give the total value and the increment of the load ratio in each 

step. The increment of load ratio is not constant, but its values are those that provide 

a constant increment of a cylindrical arc-length. By visual inspection, it is possible 

to notice some relations between these curves and the equilibrium path of the model. 
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Figure 5.23 – Nodal displacements for each step 

 

Figure 5.24 – Increment of nodal displacements for each step 
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Figure 5.25 – Load ratio for each step 

 

Figure 5.26 – Increment of load ratio for each step 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



187 

 

6. Final Considerations 

6.1. Conclusions 

The main observations about the overall behavior of the implemented solution 

methods and nonlinear formulations, for the analyzed models, are the following: 

 The results provided by the different incremental-iterative methods and 

geometrically nonlinear formulations are numerically equivalent. That is, 

when the analysis is successfully performed, the converged equilibrium 

configurations are in the same curve (considering a numerical tolerance), 

regardless the method or formulation used to solve the problem. What 

distinguishes the analyzes with one or another method and formulation 

is the ability to capture the complete solution and the efficiency to 

accomplish it. 

 The ALCM_CYL, MNCM, and GDCM are the most robust methods. 

These were the only methods able to get the complete solution in all 

analyzes without problems. 

 The CR formulation is the most efficient, when considering the required 

number of steps and iterations per step to trace the equilibrium path. In 

most tests, considering the standard iteration scheme, this formulation 

needed less iterations to achieve convergence in each step than other 

formulations. This conclusion is not valid when the modified iteration 

scheme is used. 

 The performance of the ALCM_FNP and ALCM_UNP are identical, or 

very similar, as well as the performance of the LR2O and LR4O 

formulations. 

 The LR2O and LR4O formulations usually require more steps and 

iterations, and are more prone to face convergence problems. 

 More methods fail to solve the problem with the modified iteration 

scheme than with the standard scheme. 

 

DBD
PUC-Rio - Certificação Digital Nº 1712771/CA



188 

 

The above observations on the efficiency and robustness of the solution 

methods and formulations are based on the results of a few models and cannot be 

taken as a rule for every geometrically nonlinear analysis of two-dimensional frame 

models. Even the same models, if analyzed with other program, may not lead to the 

same exact conclusions. This is because each computational implementation of the 

solution algorithms has some particular considerations that cause small variations 

in the analysis performance. However, similar conclusions are expected for 

problems of the same nature. The important point is to realize that what was stated 

in the introduction of this work is valid (Leon et al., 2011 and Bergan et al., 1978):  

“One single solution method may not be capable of solving any general 

nonlinear problem. Dealing with numerical procedures, exposes us to problems of 

convergence and numerical stability that naturally occur in these analyses. 

Therefore, a computer program for nonlinear analysis should possess several 

alternative algorithms for the solution of the nonlinear system of equations.” 

Many options for performing the geometrically nonlinear analysis were 

implemented in the new version of the Ftool program, as described in detail 

throughout this document. These options include multiple solution methods and 

nonlinear formulations, different types of increment strategies and iteration 

schemes. In addition, the possibility to run the analysis in an interactive-adaptive 

fashion, allowing users to control the flow of the analysis, intervene when problems 

appear, and redefine parameters, is of great contribution to make Ftool an 

appropriate platform for nonlinear analyzes. All the new developments for solving 

the geometrically nonlinear problem were implemented in Ftool without 

compromising its original operation and respecting its educational philosophy, 

which is one of the most remarkable features of the program. 

The focus on the educational aspect, with intuitive resources to deal with all 

the parameters involved in a nonlinear analysis, is essential to simplify the analysis 

process and make it easier to comprehend. A consequence is that the overall 

numerical experimentation process becomes more accessible to those with little 

experience and knowledge on the subject, arousing the interest of students in 

learning about structural nonlinearity. Therefore, it is expected that this new tool 

will contribute considerably to the teaching of structural analysis with second-order 

effects. 
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6.2. Future Works 

Some suggestions for future implementations are: 

 Parallel analysis: As defined by Gattass & Abel (1983), a parallel 

analysis are those analysis that do not directly give the response of the 

structure but aid in the comprehension of its behavior or in the selection 

of algorithms and analysis parameters. In the context of geometric 

nonlinearity, a handy parallel analysis is the ability to compute buckling 

(or critical) loads. The buckling loads provide an idea about the stability 

of the structure and can be used to aid the selection of the step increments. 

Buckling modes, which are the deformed configuration corresponding to 

the buckling loads, are also an interesting result to provide when 

performing the parallel analysis. These results can be obtained from an 

eigenvalue problem, which should be implemented in the analysis solver. 

 Deformed configuration: To better represent the deflected shape of the 

elements, instead of straight lines between nodal coordinates, it is 

proposed to interpolate nodal rotations using the Hermitian shape 

functions over the corotated configuration. This would be useful when 

poorly discretized elements are used. 

 Automatic discretization: An important feature to facilitate modelling, 

when considering a nonlinear analysis, is allowing an automatic 

discretization of beam elements into a desired number of sub-elements. 

 Inclusion of new sources of nonlinearities: With the developed general 

algorithm for the solution of the system of nonlinear equilibrium 

equations, the inclusion of a new source of nonlinearity is 

straightforward. Material nonlinearity and the consideration of plastic 

hinges are some important nonlinear effects in the analysis of reticulated 

structures that should be included in the program. 
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