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Abstract

Rangel, Rafael Lopez; Martha, Luiz Fernando Campos Ramos (Advisor).
Educational Tool for Structural Analysis of Plane Frame Models with
Geometric Nonlinearity. Rio de Janeiro, 2019. 200p. Dissertacdo de
Mestrado — Departamento de Engenharia Civil e Ambiental, Pontificia
Universidade Catolica do Rio de Janeiro.

Nonlinear analysis of structures is an important task for efficient and safe
projects, allowing the saving of material resources and the identification of second-
order effects on the behavior of structural models that may have significant
consequences. This type of analysis is performed with iterative numerical
algorithms, and visualization of graphic results is essential to auxiliary the
interpretation of the analyst. For this reason, nonlinear analyses only became
common with the advent of graphical-interactive computational applications.
However, unlike a linear-elastic analysis, where the results provided by the program
depend very little on the users knowledge about the solution methods, a nonlinear
analysis requires a series of input parameters related to the numerical methods and
thus demands a basic understanding about the solution algorithms and nonlinear
structural behavior. With this in mind, this work aims to develop a user-friendly
computational tool with a simple graphical interface, but with a robust solver, to
assist the learning of geometrically nonlinear analysis of two-dimensional frame
models. The structural analysis software Ftool, largely used by the Civil
Engineering community and academia, was adopted to receive the new features to
perform geometrically nonlinear analyses. In the new version of the Ftool program,
students, engineers and researchers have the opportunity to use and test various
solution techniques of the nonlinear system of equilibrium equations, which are
described in detail throughout this work. The way the nonlinear analysis is
performed allows for a full control by users over the progress of the analysis. In
addition, graph results can be studied in the new plotting environment of the

program.

Keywords

Structural analysis; geometric nonlinearity; two-dimensional frame models;

post-buckling behavior; educational software.
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Resumo

Rangel, Rafael Lopez; Martha, Luiz Fernando Campos Ramos (Orientador).
Ferramenta Educacional para Andlise Estrutural de Modelos de Porticos
Planos. Rio de Janeiro, 2019. 200p. Dissertacdo de Mestrado — Departamento
de Engenharia Civil e Ambiental, Pontificia Universidade Catdlica do Rio de
Janeiro.

A analise ndo linear de estruturas é uma tarefa de grande importancia na
execucdo de projetos eficientes e seguros, permitindo a economia de recursos
materiais, ao tempo que se identifica efeitos de segunda ordem no comportamento
do modelo que podem vir a ter consequéncias significativas. Esse tipo de anélise é
realizado através de algoritmos numéricos iterativos, e a visualizacdo de resultados
gréaficos é essencial para auxiliar a interpretacdo do analista. Por isso, a analise ndo
linear s se tornou recorrente com o advento de aplicagcbes computacionais grafico-
iterativas. Porém, diferentemente de uma andlise linear-elastica, em que 0s
resultados fornecidos pelo programa pouco dependem do conhecimento do usuario
sobre os métodos de solucdo, a analise ndo linear requer uma série de parametros
de entrada relacionados aos métodos numéricos e, portanto, exige um conhecimento
basico por parte do usuario sobre os algoritmos de solu¢do e comportamento do
modelo. Tendo isso em vista, este trabalho busca desenvolver uma ferramenta
computacional de facil uso e com uma interface grafica simples, porém com um
solver robusto, para auxiliar a aprendizagem da analise geometricamente nao linear
de modelos aporticados bidimensionais. Para isso o0 programa de analise estrutural
Ftool, consagrado na comunidade de Engenharia Civil e no meio académico, foi
adotado para receber 0s novos recursos para executar a analise com nao linearidade
geométrica. Na nova versao do Ftool, os usuarios tém a oportunidade de utilizar e
testar diversas técnicas de solugéo do sistema néo linear de equilibrio do modelo,
descritas nesse trabalho. A forma como a analise é executada permite um controle
total do usuario sobre o progresso da analise. Além disso, resultados em forma de

graficos podem ser estudados no novo ambiente de plotagem do programa.

Palavras-chave
Analise de estruturas; nao linearidade geométrica; modelos de portico

plano; comportamento pos-critico; software educacional.
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1. Introduction

1.1. Initial Considerations

Mathematical models of real physical systems can be defined as the
formulation of equations that express their essential characteristics in order to
represent an idealization and simplification of reality. In the case of structural
engineering, which deals with solid medium, the conditions that the mathematical
model of a structural system must satisfy to properly represent the behavior of the
real structure can be divided into three groups: equilibrium conditions,
compatibility between displacements and deformations, and the material
constitutive law (Martha, 2017).

The equilibrium conditions correspond to the balance of external and internal
forces of the system. This balance must ensure the global equilibrium of the
structure or any isolated portion. The condition of compatibility between
displacements and deformations is expressed by kinematic equations. These are
geometric relations that must be satisfied to ensure continuity of the structural
model. That is, the deformed configuration of the structure must remain continuous,
with no gaps, and compatible with its external links. Finally, the material
constitutive law expresses a set of mathematical relations between stresses and
strains through parameters that define how the material behaves at a macroscopic
level. By considering these conditions, the equations that govern the behavior of
the structure can be developed and solved by further imposing displacements
(essential) and forces (natural) boundary conditions, which characterize the
interaction of the system with the external environment.

In practice, the mathematical modelling of structural systems in the field of
computational mechanics makes use of some numerical method of domain
discretization. This means that the continuous model is discretized into a finite
number of degrees-of-freedom, and the governing equations form an algebraic
system whose unknowns are discrete values of the quantities associated to the
degrees-of-freedom. The Finite Element Method (FEM) is mostly used for this
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purpose. In particular, the Direct Stiffness Method, a version of the FEM based on
element stiffness to determine nodal displacements and/or rotations, is the most
common strategy (Felippa, 2005).

A major concern regarding the development of the finite element equations is
that any of the described conditions of the mathematical model can be formulated
by linear or nonlinear relations, resulting in a discretized system of the same nature.
Therefore, a decision must be made with respect to which formulation should be
considered for the mathematical model.

In a linear formulation, several hypothesis are adopted to approximate the
structural behavior and simplify the modelling and solution of the problem. The
small displacement hypothesis considers that the displacements and rotations that
the structure undergoes are negligible when compared to its dimensions.
Consequently, equilibrium can be imposed on the initial (undeformed)
configuration, and only linear terms are considered in the kinematic equations. The
structural analysis with this consideration is called first-order analysis. The
hypothesis that the relations of the constitutive law are linear equations with
constant parameters results in a linear-elastic behavior of the materials. The
material behavior is considered elastic when, after unloading the structure, it returns
to its initial configuration with no residual deformations, and considered linear
when stresses and strains are proportional. In addition, the natural and essential
boundary conditions must be invariable for any level of external load, not
depending on the deflections of the structure. If all these simplifying conditions are
satisfied, the response of the structure becomes proportional to the applied
solicitations, and the system of linear equations of the mathematical model can be
solved analytically.

Most civil engineering structures behave in a linear-elastic fashion under
service loads. However, prior to reaching their limit of resistance, almost all
structures would exhibit significant nonlinear response (McGuire et al., 2000).
Therefore, it is not always possible to adopt such a simplified linear formulation,
and a nonlinear formulation should be chosen. In structural mechanics, the
nonlinear behavior may have a geometric, physical or boundary condition origin,
depending on the sources of nonlinearities considered in the conditions of the

mathematical model.
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The geometric nonlinearity is a result of changes in the geometry of a
structural system subjected to deflections that are relatively large when compared
to the dimensions of its components. In this case, the consideration of large
displacements and large rotations, as well as the inclusion of nonlinear strain terms
to the kinematic equations, are required in the formulation of the finite element
equations. These considerations are necessary to impose the equilibrium of the
structural system on its deformed configuration, so that the nonlinear response of
the structure geometry can be taken into account. This type of geometrically
nonlinear analysis is also known as second-order analysis. Large deformations can
also be considered in a geometrically nonlinear formulation, but it is usually
associated with nonlinear material behavior as well.

The physical, or material, nonlinearity occurs when the constitutive relations
between stresses and strains are not linear, and the behavior of the material depends
on the past states of deformation. When the intensity and/or direction of the
externally applied loads depend on the structure displacements, which is the case
of follower loads, the problem is said to have nonlinearity in the forces, or natural,
boundary conditions. The displacements, or essential, boundary conditions can also
exhibit nonlinear behavior when they are displacement dependent, such as the case
of contact problems.

A nonlinear analysis, of any type, aims at predicting the actual behavior of
structures with more accuracy, as the formulation of the mathematical model
involves fewer simplifications when compared to a linear formulation. However,
the reason for not always considering the sources of nonlinearity, and when
considered, not including all sources, is because it makes the modelling process
harder and the solution much more expensive in a computational sense. The
simulation of the nonlinear behavior involves numerical techniques to solve the
system of equations by performing numerous linear analyses. Therefore, it is an
important task for the analyst to decide which types of nonlinearity, if any, are
relevant to be considered in the project.

As stated by Bathe (1996), in an actual engineering analysis, it is good
practice that a nonlinear analysis of a problem is always preceded by a linear
analysis. Based on the linear response, the analyst is able to predict which
nonlinearities will be significant and how to account for these nonlinearities most

appropriately.


DBD
PUC-Rio - Certificação Digital Nº 1712771/CA


PUC-Rio- CertificagaoDigital N° 1712771/CA

20

1.2. Motivation

In order to make structural projects more and more economical, engineers
have been using materials of higher resistance to reduce the consumption. The result
is structures with increasingly slender and flexible elements. Such structures can be
subjected to displacements of significant magnitude that, if not considered in the
analysis, may give rise to undesirable second-order effects, such as buckling, that
compromise the use of the structures and can lead to catastrophic failures.
Therefore, to meet the safety and durability criteria, a second-order analysis
becomes fundamental in some cases, especially in projects of steel frame models.
This type of analysis involves numerical methods, and visualization of graphic
results is essential to auxiliary its interpretation. For these reasons, the use of
nonlinear analyses was greatly improved with the advent of graphic-interactive
computational applications.

The numerical techniques for solving the nonlinear system of equations in a
second-order analysis are performed incrementally. This methodology consists of
starting the analysis from a known equilibrium solution, normally the undeformed
configuration, and follow the behavior of the system until a desired level of
solicitation is reached, as the applied actions are incremented in small linear steps
to approximate the nonlinear response in that increment. The reason for this
incremental approach is because the nonlinear response of the structure may present
some critical points, associated with the second-order effects, where iterative
numerical methods would not be able to detect with a single step analysis. Thus,
the identification of these effects can be done by studying the history of equilibrium
solutions, and one of the main goals of a geometrically nonlinear analysis is to
obtain the equilibrium paths of the structure. These paths are curves of the variation
of the equilibrium configuration of the structure with a given control parameter. A
typical curve expresses the relation between the applied load and the displacement
associated with a certain degree-of-freedom, and can assume very complex forms
depending on the degree of nonlinearity of the solution.

Many incremental solution methods have been developed for capturing the
nonlinear behavior of structures and tracing the equilibrium paths. Some of these
methods are simpler and computationally more efficient, but limited. Others are

more sophisticated and robust, being able to capture the response beyond critical
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points. However, as stated by Leon et al. (2011), one single solution method may
not be capable of solving any general nonlinear problem. Dealing with numerical
procedures, exposes us to problems of convergence and numerical stability that
naturally occur in these analyses. Therefore, according to Bergan et al. (1978), a
computer program for nonlinear analysis should possess several alternative
algorithms for the solution of the nonlinear system of equations.

That said, the use of computer programs to perform nonlinear analyses is not
atrivial task. In a linear-elastic analysis, the results provided by the program depend
very little on the users knowledge about the solution methods. For frame models,
the response is obtained analytically, within the mathematical assumptions of the
model, and does not depend on any numerical parameter or mesh refinement of
each beam element. On the other hand, the results of a nonlinear analysis depend
on a series of input parameters related to the numerical solution techniques, besides
the discretization of bars. For each problem, the analyst must select a set of
algorithms and analysis parameters that in his/her judgment will perform the
analysis without diverging or spending an excessive amount of computer time. The
engineer can only base this choice on previous experiences with similar structures
and on his/her knowledge of the available algorithms. Even for an experienced
analyst this selection is difficult, and the alternative of running several different
analyses is inefficient and time consuming. Thus, a nonlinear analysis demands a
more in-depth understanding about the solution algorithms and nonlinear structural
behavior.

Some techniques of automatic or self-adaptive analysis are available to
improve the efficiency and the convergence of nonlinear problems, while
minimizing the influence of user decisions, but do not completely overcome the
difficulties. Such procedures, even when successful, do not actively promote the
understanding of the structural behavior. An appropriate alternative is the use of an
interactive-adaptive technique for the nonlinear analysis. Gattass & Abel (1983)
presented an investigation of this technique for large-displacement analysis of
framed structures. According to these authors, interactive-adaptive methods of
analysis are those in which the parameters and algorithms are selected or changed
by the user during the analysis itself. These strategies allow for the possibility of an
extensive control over the solution process, providing an efficient way to monitor

the results and to intervene when problems appear.
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The lack of tools that meet the requirements of performing an efficient
nonlinear analysis of structures, by offering multiple solution options and allowing
for an interactive-adaptive analysis, while focusing on the educational aspect, being

accessible to those with little experience, is what motivated this work.
1.3. Literature Review

Two distinct numerical processes are identified in a nonlinear analysis
problem. The first is the formulation of the problem which, in the case of the
displacement-based FEM, consists of obtaining a system of nonlinear equilibrium
equations. The second is the solution of the system of nonlinear equations, mostly
done by incremental and/or iterative methods. These processes are independent.
That is, the formulation of the system of nonlinear equations is not associated with
any solution method, and vice-versa. However, both of them are equally important
for obtaining a consistent response of the structural problem. Thus, due attention
should be given to each of them.

The period from 1960 to the mid-1980s was emblematic for researches on the
formulation and solution of nonlinear structural engineering problems involving the
FEM. Later advances, almost entirely, are based on the theories developed during
this period. A historical background of some advances and accomplishments made
in those decades is presented by Felippa (2004). In the following sections, the main
works that contributed to the current state-of-the-art of the analysis of two-
dimensional frame structures with geometric nonlinearity will be mentioned. In
addition, computational tools with similar purposes of the one developed in this

work will be described.
1.3.1. Nonlinear Formulation

The formulation of geometrically nonlinear analysis of structures depends on
two aspects, the theory adopted for the mathematical model of structural elements
and the kinematic description of motion to derive equilibrium equations. For frame
models, made of beam elements, two theories are commonly employed to
mathematically describe the flexural behavior of these elements, the Euler-

Bernoulli theory and Timoshenko theory.
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The Euler-Bernoulli bending theory (also known as Navier theory) originated
from the early studies of beam elements by Leonhard-Euler and Jacob Bernoulli in
the 18th century. This is the simplest theory for simulating flexural behavior of
beam elements, in which element cross-sections remain plane and perpendicular to
the longitudinal axis of the element after bending, as a result of disregarding shear
deformations. It is the most widely used theory for both linear and nonlinear
problems and it is implemented in most structural analysis software. Because of
that, this theory will be adopted for the development of nonlinear equilibrium
equations in this work.

On the other hand, Timoshenko theory (Timoshenko & Gere, 2009) differs in
considering, even though in a simplified fashion, shear deformation of element
cross-sections, providing better results for analyzing slender elements. It becomes
relevant only for beams with a length to height ratio of less than 5 (Martha, 2018),
including analyzes with geometric nonlinearity (Rodrigues, 2019). Since the effects
of geometric nonlinearity are generally associated with slender elements, it was
chosen not to cover this theory in this work. Due to its greater complexity, this
theory has been studied by several researchers. For example, Friedman & Kosmatka
(1993) presented a stiffness matrix that can be exactly integrated and is free of
‘shear-locking’. Schramm et al. (1994) derived a new general beam stiffness matrix
that accounts for both bending and shear deflection. Pilkey et al. (1995) provides
stiffness, geometric, and mass matrices for straight Timoshenko beams with
arbitrarily shaped cross-sections and in an arbitrarily oriented coordinate system.
Rangel & Martha (2019) presented unifying coefficients for Euler-Bernoulli and
Timoshenko theories. In addition, several researchers have also sought higher order
bending theories, such as Levinson (1981), Heyliger & Reddy (1988), Petrolito
(1995), among many others.

In a geometrically nonlinear analysis, the formulation of equilibrium
equations is generally based on a Total Lagrangian (TL), an Updated Lagrangian
(UL) or a Corotational (CR) kinematic description of motion. These kinematic
formulations are similar for finite deformation problems in continuum mechanics,
with the only difference being the reference configuration adopted to describe the
motion of the structural elements as they deform and change shape. The UL and the
CR formulations are used in this work.
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Total Lagrangian and Updated Lagrangian nonlinear formulations have
historically received more attention. Several formulations for analysis with
geometric nonlinearity of two-dimensional frame models were developed in this
context. Among the first works, we can mention Martin (1966), Jennings (1968),
Mallet & Marcal (1968), Powell (1969), and Ebner & Ucciferro (1972), who
conducted a comparative study between the previous formulations. Epstein &
Murray (1976) developed a formulation for large deformations analogous to that of
shell elements, presented by Budiansky (1968).

Posteriorly, Bathe & Bolourchi (1979) compared both Lagrangian
formulations for a three-dimensional beam element subjected to large
displacements and rotations, but small deformations. In that work, it was verified
the equivalence of the results for both formulations and it was concluded that the
UL formulation is computationally more efficient for this type of problem than the
TL formulation. Bathe (1996) further develops formulations in the Lagrangian
framework for various finite elements, continuous and uniaxial, derived from the
principles of continuum mechanics and an incremental approach of the Principle of
Virtual Works.

Alves (1993a,b) presented and compared different formulations based on the
TL and UL descriptions. Pacoste & Eriksson (1997) introduced UL formulations
based on improved displacement-deformation relations with nonlinearity expressed
by trigonometric functions, including Timoshenko beam theory. Galvdo (2000)
implemented these proposed geometrically nonlinear formulations for beam
elements and made a comparative study of their computational efficiency and
results. Neuenhofer & Filippou (1998) presented a force-based element for
geometrically nonlinear analysis of plane frame structures. Rodrigues (2019), based
on the work of Burgos & Martha (2013), developed geometric stiffness matrices
considering high-order terms of the strain tensor and interpolating functions that
take into account the axial load acting on the element, formulated for Euler-
Bernoulli and Timoshenko theories, with the UL description. Other works include
Wen & Rahimzadeh (1983), Chajes & Churchill (1987), Goto & Chen (1987),
Wong & Tin-Loi (1990), Yang & Kuo (1994), Torkamani et al. (1997), and
Nanakorn & Vu (2006).
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The Corotational formulation, despite being an old concept, was the last to
gain popularity in the analysis with geometric nonlinearity. Its use is especially
widespread for analyses with finite motions but small strains of structural elements
such as beams, plates and shells. This approach originated from the theorem of polar
decomposition, which states that any general deformation can be uniquely
decomposed into a rotation followed by a stretch component, or vice-versa.

Argyris et al. (1964) presented the first work applying the Corotational finite
element formulation to beam elements. Subsequent works that used the
Corotational approach to frame models gave it distinct names. Some of these works
include Jennings (1968), Powell (1969), Belytschko & Hsieh (1973), who studied
beam elements subjected to large rotations and proposed a method based on a
curvilinear coordinate system called convected coordinates, and Belytschko &
Glaum (1979). Many authors describe the idea by stating that it is based on a local
Eulerian reference system attached to elements, such as Oran (1973) and Izzuddin
& Elnashai (1993). A good description of the CR formulation and its relation to the
more widely used TL and UL formulations is given by Mattiasson & Samuelsson
(1984), and Mattiasson et al. (1985). Mattiasson & Samuelsson (1984) and Hsiao
et al. (1999) emphasize that within the corotating system, either a TL or an UL
formulation may be employed.

Great attention has been given to Corotational formulation since the 1990s.
This formulation for beam elements, including Euler-Bernoulli and Timoshenko
theories, is treated in several works, such as Crisfield (1991), who addressed
transformation relations between the corotated and global systems. Pacoste &
Eriksson (1995, 1997) covered the use of small displacements in the corotated
system. Teh & Clarke (1998) compared the CR formulation to the Lagrangian
formulations for three-dimensional structures. Souza (2000) presents a force-based
formulation for inelastic large displacement analysis of planar and spatial frames.
More recently, Kien (2012) developed a plane beam element for large
displacements. Oliveira & Silva (2017) used a unified Bernoulli-Timoshenko
element. Silva (2016) developed and implemented CR formulations for two-
dimensional Euler-Bernoulli and Timoshenko beams. Some other examples of
works employing this formulation are lura (1994), Crisfield and Moita (1996),
Krenk et al. (1999), Battini (2002), and Baido (2016).
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1.3.2. Solution Methodology

In addition to a consistent and well-developed nonlinear formulation, robust
and efficient solution methods for the system of equilibrium equations are
indispensable. The most efficient methods for solving the nonlinear system of
equations are based on an incremental approach, most of the times applied in
conjunction with an iterative process.

The pioneer work on incremental nonlinear structural analysis was presented
by Turner et al. (1960), in which a series of linear analysis steps was applied to a
problem with non-uniform heating and large displacements, updating the stiffness
matrix at the beginning of each increment to account for changes in the geometric
configuration, internal forces, and temperature. In subsequent years, advances were
focused on the formulation of the nonlinear finite element equations, and the purely
incremental approach to solving these equations continued being used. This
technique received the contribution of several researchers at the time, such as
Goldberg & Richards (1963), Marcal (1965), and Hibbitt et al. (1970).

However, Mallet & Marcal (1968) and Murray & Wilson (1969) observed
that the purely incremental methods may lead to anomalies in the solution and
started using corrective iterations of the Newton-Raphson type to solve the
nonlinear system at each incremental step, giving rise to the incremental-iterative
methods. Zienkiewicz (1971) later presented a modified version of the Newton-
Raphson iteration scheme, in which the tangent stiffness matrix is updated only at
the beginning of each incremental step. By the late 1970s, these incremental-
iterative methods enjoyed wide acceptance for geometrically nonlinear analyzes.

One of the greatest challenges in obtaining the complete response of a
nonlinear analysis is to reach the solution beyond critical points. The corrective
methods based on the conventional Newton-Raphson iteration is not able to do so,
as it works only with displacement corrections within each incremental step. Batoz
& Dhatt (1979) presented a method capable of passing through load limit points, in
which the iterative cycle works only with corrective load increments. Modifications
and generalizations of this method for post-buckling and collapse analysis was also
presented by Bergan (1980), Powell & Simons (1981), and Bergan & Simons
(1984). However this technique cannot capture snap-back (or displacement limit)

points. To overcome this problem, incremental-iterative methods that work with
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corrective increments of both control variables (load and displacement), called
continuation methods, have been developed since then.

The main idea of the continuation methods is to restrict the iterative solutions
to a hyper-surface that crosses the equilibrium path at one or more points. The
equation that defines this hyper-surface is called constraint equation and must be
added to the system of finite element equilibrium equations. A method that uses an
arc-length to restrict the iterative corrections of load and displacement received
great attention from the scientific community and it was recognized by Meek & Tan
(1984) as one of the most efficient. The development of this method and its
variations is due to the works of Wempner (1971), Riks (1972), Riks (1979),
Crisfield (1981), Ramm (1981), Ramm (1982), Crisfield (1991), and Crisfield
(1997). A method based on a constant increment of external work to restrict the
iterations was studied by Powell & Simons (1981), Bathe & Dvorkin (1983), and
Yang & McGuire (1985). Chan (1988) introduced a constraint based on the
minimum norm of the residual displacements. Yang & Shieh (1990) and Yang &
Kuo (1994) proposed a method based on a generalized displacement to control the
iterative corrections, in which a modified version was recently presented by Leon
et al. (2014). A new solution strategy was later proposed by Krenk (1995) and
Krenk & Hededal (1995), with the introduction of an orthogonality condition
between the iteration residue and the corresponding increment of displacement.

The techniques for solving the system of nonlinear finite element equations
of structural problems with geometric nonlinearity are in a satisfactory state of
development nowadays, with robust and efficient methods for capturing the
equilibrium path and crossing critical points. Crisfield (1997) discusses some
numerical techniques to identify the presence of critical points in the solution.
Silveira et al. (1999) presented a methodology for the implementation of
incremental-iterative solution methods, in which a predicted solution is obtained
first from a single linear analysis, and then the iterations of Newton-Raphson type
are performed to correct the predicted solution until equilibrium is achieved. Rocha
(2000) carried out a comparative study of several incremental-iterative solution
methods. Maximiano (2012) introduced an alternative stabilization strategy of the
orthogonal residue method proposed by Krenk (1995). Mufioz & Roehl (2017)
proposed a continuation method with combined restrictions to obtain the full

response in the presence of geometric nonlinearities and elasto-plastic softening.
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1.3.3. Computational Tools

Computational programs that use the FEM for structural analysis can follow
two lines of development, based on the objectives and target audience. Some are
industry oriented while others have a more academic or educational appeal. The
first group includes professional programs used in design offices that usually
require a paid license. It is natural that these programs are not concerned with
teaching structural behavior or the methods they use to solve the problem.
Sometimes an educational version is available with a number of limitations, but
these programs are mostly robust and hard to use. The second group are programs
intended for teaching structural analysis to engineering students. These programs
are simpler to use and focus on aspects of the structural behavior that may not be
relevant for a professional project. Some of these programs are open-source and
explore the implementation of the solution methods. A hybrid approach can also be
established as long as it is possible to meet the needs of both audiences. Following
are presented some programs, with educational or hybrid approaches, that can
perform nonlinear analyzes of reticulated models, which is the case of the tool
developed in this work.

The MASTAN2 (McGuire et al., 2000) is a graphical-interactive structural
analysis program developed in the MATLAB environment that provides pre-
processing, analysis, and post-processing capabilities. The analysis routines
provide the user the opportunity to perform first or second-order elastic or inelastic
analyses of two or three-dimensional frames and trusses subjected to static loads.
To solve the geometrically nonlinear problem, the program offers two single-step
methods and two incremental-iterative methods. The first category includes the
simple step (or Euler) method and a predictor-corrector method. The incremental-
iterative techniques are the load control and the work control methods, with the
option to choose between the standard or modified Newton-Raphson iterative
schemes. The program also allows for an interactive-adaptive analysis, giving the
option to resume the analysis at any step with new input parameters. MASTAN?Z is
the successor of a family of educational programs developed in Cornell University
Computer-Aided Instructional Facility during the 80’s. Unfortunately, there are

very few references, if any, available to these programs.
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The CS-ASA (Computational System for Advanced Structural Analysis) was
initially developed by Silveira (1995), using the Fortran 77 programming language,
to investigate the elastic instability of columns and arches with unilateral contact
restrictions. Many research projects have used this computational system as a basis
for the development and validation of new nonlinear formulations and solution
strategies, applied to static and dynamic analysis of steel structures. Among them
are the works of Rocha (2000) and Galvdo (2000), when several continuation
solution methods were implemented, Galvao (2004) also developed routines for
vibration analysis, Machado (2005) included inelastic formulations based on the
plastic hinge method, and Silva (2009) unified the previous implementations. Prado
(2012) built a graphical user interface for pre-processing steps using the IUP
(Portable User Interface) system (Levy et al., 1996), which is the same graphical
interface development toolkit used in the application implemented for the current
work.

The INSANE (Interactive Structural Analysis Environment), as described by
Pitangueira & Fonseca (2007), is a platform for scientific computation that applies
the FEM to structural analysis problems. The program later extended its
applications to different areas, including fluid mechanics and heat transfer, as a
result of many research projects. The types of structural models that can be analyzed
include trusses, frames, plates, shells, plane stress and strain models, etc. Besides
the basic analysis with static and linear-elastic assumptions, several advanced
analysis options are available. Germanio (2005) developed a module for dynamic
analysis. Fonseca (2008) added geometrically nonlinear analysis to the previous
work. Melo (2017) implemented the Corotational formulation for the nonlinear
analysis of two-dimensional beam elements. These nonlinear implementations
make use of the work of Fuina (2004), who implemented incremental-iterative
methods to solve the nonlinear system of equilibrium equations, which include
controls of load, displacement, work, arc-length, orthogonal residue, generalized
displacement, and deformations. These methods were complemented by Jean
(2017), who included the arc-length control method based on the rates of internal
and dissipated energy. The program also disposes of a graphical-interactive
environment for pre, post, and processing steps of the analysis process. It is
developed using the JAVA programming language, and all of its modules are

implemented using the Object Oriented Programming (OOP) paradigm.
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The AFA-OPSM (Advanced Frame Analysis — Ouro Preto School of Mines),
by Santana (2015), is a graphical-interactive program intended to perform
geometrically nonlinear static analysis of two-dimensional trusses and frames. This
program was developed using the OOP paradigm and the graphical resources of
MATLAB. It provides in an integrated way, the phases of modeling, analysis, and
results visualization. The nonlinear solution methods include the strategies based
on constant load increments, variations of the arc-length control, and the minimum
norm of the residual displacements.

It is also worth mentioning the NLS++ library (Leon et al., 2011), developed
in the C++ programming language, where several nonlinear solution methods are
unified into a single space. The methods include load control, displacement control,
work control, arc-length control, generalized displacement control, and the
orthogonal residue procedure. The unified schemes are formulated and
implemented such that additional nonlinear solution methods are readily
incorporated and integration into a finite element analysis code is straightforward.
Even though it is not a graphical program, the approach follows an educational
philosophy. Several other libraries of nonlinear solution algorithms have been
previously developed by Mondkar & Powell (1978), Clarke & Hancock (1990),
Rezaiee-Pajand et al. (2009), among others.

The FEMOOP (Finite Element Method Object Oriented Program) system
(Martha & Parente 2002) is a library for numerical analysis of structures develop in
the Department of Civil Engineering of PUC-RI0 in the early 90’s. Its nonlinear
analysis capabilities were implemented based on the work of Roehl (1987), which
is one of the pioneering work on nonlinear analysis of structures within the
mentioned department. This work considers the geometrically nonlinear analysis of
three-dimensional frame models with end rotation release and distributed loads,
based on the Updated Lagrangian formulation.

Some other interesting projects, whose focus is on the educational aspects of
structural mechanics, are the FAST (Finite Element Analysis Tool) (Parente, 2018),
SALT (Sistema de Analise de Estruturas) (Lima, 2017), AcadFrame
(http://www.set.eesc.usp.br/softwares_depto/acadframe), and LESM (Linear
Elements Structure Models) (Rangel & Martha, 2019).
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The Ftool (Two-dimensional Frame Analysis Tool) program (Martha, 1999),
which served as basis for developing the geometrically nonlinear analysis
application in this work, has already received some contributions in the field of
nonlinearity. Del Savio (2004) developed a version of the program with semi-rigid
connections, where a rotational spring finite element was implemented to perform
elastoplastic analyses. Silva (2017) continued previous implementations on the
analysis and design of reinforced concrete elements, by introducing the design of
concrete columns. In that work, the Two Cycles method (Chen & Lui, 1991) was
included to execute a simplified geometrically nonlinear analysis. This method is
based on performing a linear-elastic analysis followed by a geometric nonlinear
analysis with the updated tangent stiffness matrix to correct the linear results. Silva
et al. (2016) compared the use of this simple method with the standard Newton-
Raphson iterative method and showed that the Two-Cycle scheme is capable of
obtaining approximate results at a satisfactory level for designing reinforced-
concrete structures with smooth nonlinearities that do not reach load limit points.
Gomes (2019) complemented previous works on reinforced concrete design with
the insertion of physical nonlinearity by changing the stiffness of element cross-
sections to consider the effects of concrete cracking and creep, as well as the
nonlinear relation between stresses and strains. Despite these advances, none of the
versions of the Ftool program that include some source of nonlinearity was released,

remaining as a tool for linear-elastic analysis of plane frame models.
1.4. Main Objectives and Contributions

This work describes the development and use of a graphical-interactive tool
for geometrically nonlinear analysis of two-dimensional frame structural models,
considering large displacements and large rotations, but small deformations in the
elastic regime of the material behavior. Such models consist of beam elements with
axial and flexural behavior in a single plane. In the developed tool, Euler-Bernoulli
and Timoshenko beam theories are available for the flexural behavior (although,
for simplicity, only Euler-Bernoulli formulation is presented in this document).
This application was incorporated as a new feature of the Ftool (Two-dimensional
Frame Analysis Tool) program (Martha, 1999), which is a largely used software in
the Civil Engineering community and has demonstrated to be a valuable program

for teaching structural analysis over the last years.
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The development of this application aims to meet two main goals. The first
one is focused on the academic community and seeks to provide an educational tool
to improve users understandings about the second-order effects and the post-
buckling behavior of framed structural models. It is also intended to increase their
sensitivity on the use of the numerical methods to obtain the nonlinear response,
allowing studies on the influence of the input parameters to the converged solution.
Considering the difficulties imposed by the numerical solution of a nonlinear
analysis, which is described in details throughout this work, it is required an easy-
to-use application with intuitive resources to make it accessible not only to graduate
students and to researchers, but also to undergraduate students. The Ftool program
has the ideal environment for this intuitive nonlinear analysis, since the spread of
its use was mainly due to the simplicity of the modeling and analyzing processes,
and to the sophisticated data structure for pre and post-processing the analysis
information.

The second goal is focused on the industry, by supplying structural engineers
with a software that has a robust solver and allows users to have an extensive control
of the nonlinear analysis process. Since no algorithm is able to solve all the
nonlinear problems, this extensive analysis control brings for the analyst a greater
possibility to obtain the full solution of any geometrically nonlinear problem and,
therefore, to meet the safety and durability criteria of structural projects. The
examples of this work prove the importance and the necessity of having a large
number of settable options and parameters to perform and control nonlinear
analyses.

To accomplish these goals, the developed tool has a user-friendly graphical
interface designed to provide users with a wide range of analysis options, including
the most well-known incremental single-step and incremental-iterative methods to
solve the nonlinear system of equilibrium equations. An interesting feature of the
developed application is the possibility to perform the nonlinear analysis in an
interactive-adaptive fashion, by allowing the change of any of the analysis options
and parameters between the incremental steps, as the analysis progresses. It is also
possible to go back and forward in the analysis steps. These options for driving the
analysis can help even experienced users to work with numerical algorithms,
because when a non-converging point is found, one can change the parameters or

use other solution methods, in the same analysis, to go beyond that point.
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Furthermore, a sophisticated graph-plotting environment was developed,
where users can create interactive graphs. Several options of information can be
plotted in each axis, including the classical curve of displacement versus load, to
study the equilibrium path of the structure. The graph data can also be selected to
show the results for each incremental step or each iteration.

An auxiliary program, called NLframe2D, was also developed as a parallel
implementation for this work using the MATLAB script language. The general
structure of the code of this program is the same of the code developed for the
nonlinear analysis module of the Ftool program. Since the MATLAB programming
language has a very simple syntax, when compared to the C programming language,
this auxiliary program is used to present the implementation of the solution process
of the nonlinear structural problem considered in this work. In addition, the program
is open-source and is available for download in:

https://www.mathworks.com/matlabcentral/fileexchange/73129-nlframe2d.
1.5. Outline

The remainder of work is divided into five chapters. The organization of the
subjects follows the order: formulation, solution, implementation, and results. The
next two chapters are devoted to the theory of geometrically nonlinear analysis of
structures. The last three chapter are intended to present the developed tool, the
provided results, and the conclusions.

In Chapter 2, the formulation of the nonlinear structural problem is developed
to obtain the tangent stiffness matrix of the system of finite element equilibrium
equations. Two types of nonlinear formulation are employed, based on the
kinematic description of motion, the Updated Lagrangian formulation and the
Corotational formulation. For each formulation, the local tangent stiffness matrix
of a two-dimensional beam element that follows Euler-Bernoulli theory is obtained.

Chapter 3 starts by presenting the main reasons for the incremental approach
in the solution of the nonlinear system of equilibrium equations, and discussing
some important characteristics of the equilibrium path of structures, such as critical
points and stability concepts. The overall goal of this chapter is to describe the
general steps of the incremental solution process and present in details the theory
behind the solution methods implemented in the developed tool. Two classes of

methods are presented: incremental single-step and incremental-iterative methods.
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Chapter 4 shows the developed tool, and it is divided into two main sections.
The first section is intended to demonstrate the computer implementation of the
solution process. The auxiliary program NLfram2D is used for this purpose. The
MATLAB code of each solution step is provided and described. The second section
Is dedicated to presenting the new version of the Ftool program, showing the
modifications from a user point of view, i.e., the new features in the graphical
interface, their purposes and how to use them.

Chapter 5 is intended to validate the results obtained by the new version of
the Ftool program, based on the analytical or numerical solutions of four benchmark
problems, each one with a distinct nonlinear behavior. The robustness and
efficiency of the implemented solution methods and nonlinear formulations are also
investigated in the chapter. For this purpose, a study on the performance of the
methods and formulations to solve the problems is carried out, taking into account
the number of steps and iterations to reach the solution using different analysis
options.

Chapter 6 brings the concluding remarks about the numerical results and
reinforces some of the points that motivated this work. Suggestions for future works
are also presented in the chapter.

Chapter 7 is the bibliography, with all references cited in the text.
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2. Geometrically Nonlinear Formulations

2.1.Introduction

The equations of mathematical formulations of physical phenomena are
commonly expressed as differential equations. In most cases, these are very
complicated equations and/or are applied to complex domains, which makes an
analytical solution impossible to obtain. To overcome these difficulties, numerical
methods are invoked to discretize the continuous problem into a finite number of
degrees-of-freedom, so the differential equations can be written as algebraic
equations. The discretized algebraic equations are normally written as a matrix
system, in which the coefficient matrix relates state variables to control variables.
When the displacement-based Finite Element Method is applied to discretize a
structural mechanics problem, the state variables are displacements and rotations of
nodal points, while the control variables are external solicitations, such as loads.
The system matrix, in this case, is a stiffness matrix that gives information about
the necessary forces to impose certain displacements to the structure. In a
geometrically nonlinear analysis, this matrix is called a tangent stiffness matrix
because of its nonlinear nature, since its coefficients involve internal forces,
obtained from the displacements. Therefore, the stiffness coefficients are not
constants, varying from point to point in the solution, and the “tangent” term means
the linear approximation at any point. The tangent stiffness matrix is composed by
a material-dependent portion, called here as elastic stiffness matrix, and a geometry-
dependent portion, called geometric stiffness matrix, responsible for accounting for
changes in the stiffness of the system due to the large deflections.

This chapter is intended to formulate the geometrically nonlinear structural
problem of two-dimensional frame models using the FEM to discretize it into beam
elements, considering Euler-Bernoulli flexural behavior. The local tangent stiffness
matrices of this type of element are derived. Two types of formulations, based on
the kinematic descriptions of motion, are used: Updated Lagrangian formulation

and Corotational formulation.
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For the Updated Lagrangian formulation, three different types of geometric
stiffness matrix are presented for beam elements, considering distinct terms of the
strain tensor and degrees of sophistication of the shape functions. For the
Corotational formulation, only one tangent stiffness matrix is developed. This
matrix is based on the common consideration that the deformations of the beam
with respect to a corotated configuration are small, so linear strain measurement is

used.
2.2.Kinematic Descriptions of Motion

Consider a continuous body, composed of material points, or particles, that
occupy different positions in space described by coordinates on a stationary
Cartesian axis system. In a geometrically nonlinear analysis, this body is subjected
to large displacements, rotations, and strains that change the position of its particles,
as well as its superficial area and volume. Thus, the body assumes different
configurations as it moves in space and changes shape.

In the context of the continuum mechanics, there are two ways to describe the
movement of the body, the Eulerian description and the Lagrangian description
(Malvern 1969). The former focuses on the analysis of particles that pass through a
fixed spatial coordinate, and is best suited for fluid media problems where the origin
of the particles is unknown. In contrast, the latter maps the trajectory of all particles
of the body, using material coordinates, from the beginning of the movement to the
end. In this way, the movement of the body is characterized by the set of positons
occupied by the particles, which is more appropriate for solid mechanics.

To formulate the finite element equations of the body, within the Lagrangian
description of motion, a reference equilibrium configuration must be established for
measuring stresses, strains, and all kinematic and static variables. In principle, any
previously obtained equilibrium configuration can be used as the reference
configuration. However, in practice, only the initial or the last obtained equilibrium
configuration is used to formulate the problem because of the advantages they have
over intermediate configurations. Based on the choice of the reference
configuration, three kinematic descriptions are commonly used in structural
mechanics to formulate the nonlinear system of equilibrium equations: Total
Lagrangian (TL), Updated Lagrangian (UL), and Corotational (CR).
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In the formulation based on the TL description of motion, the initial
(undeformed) configuration of the analysis is taken as the reference configuration,
which remains unchanged during the entire analysis process. Displacements,
stresses and strains for formulating the equilibrium equations on the deformed
(current) configuration are referred to the initial configuration of the analysis, as
illustrated in Fig. 2.1.

Initially, the TL formulation was the most widely used in continuum-based
FEM codes. Its primary applications are in solid mechanics with finite but moderate
displacements and strains, especially for elastic materials, but not reliable for
topology changes (Felippa, 2004).

Y
Current
y .
configuration
,,,,,,, dyz
Initial configuration :
1 X

Figure 2.1 — Total Lagrangian reference configuration

In the UL formulation, the reference configuration is periodically updated to
the last achieved equilibrium configuration. That is, after an equilibrium
configuration is reached, it is desired to establish the equilibrium on a new deformed
configuration, so all the static and kinematic variables for formulating the
equilibrium equations are defined according to the previous configuration, as
illustrated in Fig. 2.2.

The UL formulation is useful in treating finite displacements and possibly
very large strains as well as in processes involving topology changes, such as
fracture (Felippa, 2004). It is also computationally more effective for beam
elements with large displacements/rotations and small deformations, when
compared to the TL formulation, as shown by Bathe & Bolourchi (1979).
Furthermore, the expressions of the formulation based on this kinematic description

are simpler than the TL formulation.
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Y
y Current‘ 92
configuration
N Previous .
Adyl configuration 0, : N
- W
Initial configuration :
1 X

Figure 2.2 — Updated Lagrangian reference configuration

In the CR formulation, the reference configuration is divided into two, so that
rigid body displacements are separated from those that generate deformations. The
initial configuration is used to measure rigid body movements, while a corotated
configuration is used to measure strains and stresses in the body. The corotated
configuration uses a local coordinate system that moves along with the body, so
that, with respect to this system, the rigid body movements are null. Figure 2.3
shows a schematic of this idea. This formulation is the latest among those used in
the analysis with geometric nonlinearity and gained popularity for structural
elements such as beams, plates and shells, especially for analyses with finite

motions but small strains.

Current
configuration

Tnitial configuration 2

1

Figure 2.3 — Corotational reference configuration
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Despite the differences in the development of the equilibrium equations, the
numerical solution should provide identical results using formulations based on any
kinematic description. According to Bathe (1996), the only advantage of using one
formulation rather than the other lies in its greater numerical efficiency. In this
work, the UL and the CR formulations are used due to their advantages for beam
elements when compared to the TL formulation, as previously mentioned. These
formulations are developed next for two-dimensional Euler-Bernoulli beam
elements. In the next section, the development of the UL formulation starts from a

continuous body to show its generality.
2.3.Updated Lagrangian Formulation

For the UL formulation, a pseudo-time variable, t, is introduced. This variable
has nothing to do with a dynamic analysis, since it is considered that the loads are
applied very slowly. That is, the load frequencies are much lower than the natural
frequencies of the structure, so a static analysis can be assumed. The pseudo-time
is used to describe the configurations of a body as it moves under load effects. A
configuration of a generic three-dimensional body is defined by its geometry
(surface area, S, and volume, V), specific mass, p, and position, described by the
Cartesian coordinates, X1, X2, X3, of each particle, at any pseudo-time.

The structure response is then defined as a series of equilibrium
configurations obtained as the pseudo-time varies in increments, At, starting from
zero. Given that all equilibrium configurations are known from the beginning of the
analysis to time t, it is desired to establish the equilibrium at time t + At, with a
system of equations formulated based on the previous configuration (or initial
configuration in the case of the TL formulation).

Figure 2.4 illustrates the configurations involved, including the total and the
incremental displacements (us, Uz, uz) between them. The time of the configuration
in which a quantity occurs is indicated by a superscript on the left side of the
variable that represents this quantity. Eventually, a left subscript is also used to
indicate the time of the reference configuration for the quantity to be measured,
especially for stresses and strains measurements. If the quantity under consideration
occurs in the same configuration in which it is also measured, the left subscript may
not be used. Indicial notation is also adopted in the next sections, with indexes

varying from 1 to 3, and considering the summation convention of repeated index.
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Figure 2.4 — Variables for the Updated Lagrangian formulation

The development of the equilibrium equations of the displacement-based
FEM lies on the application of the Principle of Virtual Works (PVW), specifically,
the Principle of Virtual Displacements (PVD). In the sequence, the application of
the PVD to a continuous body follows the work of Bathe (1996). Then the problem
is particularized to a beam element and the FEM is used to discretize the beam into

nodal degrees-of-freedom, so the local stiffness matrices can be obtained.
2.3.1. Principle of Virtual Works

The displacement-based finite element equations of the discrete mechanical
problem can be formulated by different ways. The Principle of Virtual
Displacements (PVD), the Principle of Minimum Potential Energy (PMPE), and
the Galerkin version of the Weighted Residual Methods (WRM) can be employed.
Martha (2018) shows that the energy-based methods of the PVD and the PMPE are
both derived from the Galerkin version of the WRM, giving it a physical
interpretation. In essence, all these methods are equivalent. The concepts of virtual
displacements from the PVD, variation from the variational calculus used in the

PMPE, and weighted function from the WRM, are all the same.
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The energy-based methods are largely used in structural mechanics to
formulate the equations of mathematical models. They are grounded in the
Lagrangian mechanics rather than Newton’s classical mechanics that uses vector
quantities and is not convenient for general and complex problems. The Lagrangian
mechanics is an alternative and more formal manner of imposing equilibrium,
compatibility, and constitutive conditions to the mathematical model of a structure.
It is based on the Law of Conservation of Energy, a principle that can be applied to
formulate mathematical models of physical systems in all scientific areas. This
principle expresses the balance of internal and external energy (or work) of a
physical system.

For the structural systems studied here, the only type of internal energy stored
in the body is the elastic deformation energy, W), due to the work produced by
internal stresses with the corresponding internal deformations. The external energy,
WE, is the work produced by the externally applied forces with the corresponding
displacements. The loads are applied slowly so that no vibration occurs and kinetic
energy is zero. In addition, it is also assumed that the material has an elastic
behavior and there is no energy dissipation by means of heat, noise, etc. Therefore,
according to the principle of energy conservation, the work produced by the
externally applied forces to a structure is equal to the internal energy of deformation

stored in the structure:

W, =W, (2.1)

Based on this, it is possible to determine the displacement at the point and in
the direction of a single force applied to the structure. However, this principle does
not allow the calculation of displacements in a generic way. For example, if
multiple forces are applied to the structure, or if the objective is to calculate a
displacement at another point, a single equation — Eq. (2.1) — is not sufficient to
determine more than one unknown displacement. The solution to this is the
generalization of this principle to the Principle of Virtual Works (PVW). This is a
very useful artifice for various applications in structural mechanics, involving the
concept of a virtual work. The methods based on this concept have a generic
character and are applicable to problems with elastic or inelastic behavior, structural
problems with external solicitation of forces and moments, or thermal solicitations,

as well as problems related to structural stability (Tauchert, 2007).
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The idea behind the PVW is to work with two independent systems for the
same structure (White et al., 1976):

e System A: System of forces with an external load field in equilibrium
with internal stresses.

e System B: Deformed configuration with an external displacement
field compatible with internal strains.

The generality of the PVW with respect to the principle of energy
conservation is that there is no connection (cause-effect relation) between the force
system A and the deformed configuration B. The equality between internal and
external virtual works, combining both systems, results in the PVW. These works
are called virtual because they are a mere mathematical abstraction, since the two
systems are not related in a cause-effect sense. The internal virtual work, W), which
corresponds to the internal virtual energy of deformation stored in the structure, is
produced by the internal stresses of system A with the corresponding strains of
system B. The external virtual work, dWE, is produced by the external forces of

system A with the corresponding external displacements of system B:

SW, = SW, (2.2)

The PVW has two branches: the Principle of Virtual Forces (PVF) and the
Principle of Virtual Displacements (PVD). In the PVF, the deformed configuration
B is taken as the real structure, and a virtual force system A that satisfies equilibrium
conditions is arbitrarily chosen to impose compatibility conditions to the real
deformed configuration.

On the other hand, the PVD is used to impose equilibrium conditions to a real
system of external forces and internal stresses A, from a virtual deformed
configuration B, arbitrarily chosen, that satisfies compatibility conditions. Notice
that, since the auxiliary virtual system is independent from the real system, the
virtual field of external displacements need only to satisfy compatibility of
configuration B. That is, the virtual displacement field does not have to satisfy
compatibility of the real structure (configuration A), not even essential boundary
conditions. The only restriction is that the virtual displacements must be compatible
with the virtual strains. The PVD is the basis of the displacement-based FEM

equations.
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Alternatively, the symbol & in Eq. (2.2) can also be interpreted, in the context
of variational calculus, as a variation with respect to a perturbation in the
displacement field. In this way, the internal virtual work corresponds to the
variation of the internal energy of deformation, while the external virtual work is
equivalent to the variation of the work produced by external forces. Therefore, the
variation of the total potential energy of the structure, 8I1, which is defined as the
difference between the variations of the internal energy and the work of external
forces, is zero (SIT = W, — d8WEe = 0). This interpretation corresponds to the PMPE,
which states that the equilibrium configuration is the one that guarantees the
stationarity of the total potential energy. This principle is largely used in structural
mechanics, but it is restricted to conservative systems, i.e., non-dissipative systems
in which the response is not path-dependent and there is no loss of energy (does not
work for plasticity problems or dumped dynamical systems, for example). These
are not limiting factors for the PVD and thus we rely on this general principle to
develop the FEM equations, based on the UL formulation, even though the PMPE
could be used for the type of problem dealt within this work.

Using the PVD, the internal virtual work at any configuration of the analysis
is given by the product of the real stresses, tij, by the virtual strains, dejj, integrated
over the current volume of the body, as shown in Eg. (2.3). The real stresses are
unknown and is taken as the Cauchy stress tensor, which represents the forces per
unit of area at the current configuration. The virtual strains are the infinitesimal
small strain tensor, compatible with a virtual displacement field, du, imposed to the

current configuration.
8W, = [ 7;5e,dV (2.3)
\

The expression of the external virtual work at any configuration of the
analysis, considering only loads as external actions, is given in Eq. (2.4). It has
terms associated to the work of body forces, f B, surface forces, f°, and concentrated
forces, f. Each of these terms is obtained with the product of real applied forces by
the imposed virtual displacements. In the case of distributed forces, this product is
the specific virtual work, which must be integrated over the current volume or

surface of the body.

SWe = [ f,°8u,dV + [ f,°8u’dS + f.du, (2.4)
\% S
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The PVD states that the internal virtual work must be equal to the external
virtual work for any arbitrary variation on the displacement field, i.e., imposed
virtual displacements that are compatible with the virtual strains that contribute to
the internal virtual work. This equality is used to impose the equilibrium and is valid
for any configuration of the analysis. Assuming that all equilibrium configurations
are known from the beginning of the analysis to a given time t, it is desired to
establish the equilibrium at time t + At. Therefore, the PVD is applied to this
unknown configuration. The expressions of the internal and external virtual works

at the new configuration can be written, respectively, as:

3UW, = [ NS, ,0,d YV (2.5)

Lty

6t+AtWE — HZ[V t+At fiBSUid t+AtV + le‘ t+At fiSSUiSd t+AtS + t+At fisui (26)

s
where the strain tensor components corresponding to the imposed virtual
displacements are like the components of the infinitesimal strain tensor, but the
derivatives are with respect to the current coordinates at time t + At:

. odU;
B 1( oL ] @7)

t+at Sij ZE QA | Aty
i i

We note that this is simply the application of the PVD as in a linear analysis,
but considering a deformed configuration of the body, as a result of the large
motions that change its position and shape. The Cauchy stresses are the real
unknown quantities, and it is desired to determine them (left subscript is not needed
because it occurs in the same configuration in which it is also measured). However,
a fundamental difficulty in the general application of Eq. (2.2), using Eg. (2.5) and
Eqg. (2.6), is that the configuration of the body at time t + At is unknown. This is an
important difference compared to the linear analysis, in which it is assumed that the
displacements are infinitesimally small so that the original configuration is used to
perform the integrations in Eq. (2.5) and Eqg. (2.6). Therefore, to apply the PVD to
the deformed configuration, it is necessary to use appropriate stresses and strains

measurements, as discussed in the next section.
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2.3.2. General Formulation of Continuum Mechanics

To properly address the change in the configuration of a body, suitable
stresses and strains measurements must be used. These measurements should be
able to express the equilibrium of the body in a configuration not yet known in
terms of a reference configuration already obtained. The objective is to write the
internal virtual work with an integral over a volume that is known and to be able to
incrementally decompose the stresses and strains in an effective manner.

The appropriate tensors for working with large displacements and large
rotations are the Green-Lagrange (GL) strain tensor and the second Piola-Kirchhoff
(PKII) stress tensor, both second-order tensors. To use these tensors, a reference
configuration must be established. In the UL formulation, the reference
configuration to measure a quantity that occurs at the current unknown
configuration (time t + At) is the last configuration at which equilibrium was
reached (time t). If the TL formulation were used, the reference configuration
should be the beginning of the analysis (time t = 0).

The GL strain tensor, &ijj, is a symmetrical tensor that measures only finite
deformations of the body, neglecting rigid body displacements. In a linear-elastic
analysis, the small strain tensor does not disregard rigid body rotations, which leads,
for example, to internal forces in a rotating beam element. This effect is obviously
not desired in an analysis with large deflections, so the GL strain tensor treats it
well. The indicial expression of the GL tensor to measure finite strains at the current
unknown configuration referred to the previous equilibrium configuration is
provided by Eq. (2.8). Notice that all derivatives are with respect to the coordinates

of the reference configuration of the body.

. ou;
HAttgij :1 atul +— b 8:Jk atUK (2_8)
2{0°x; 0% 0X 0

The GL strain tensor, referred to the previous configuration, can be
decomposed into a linear and a nonlinear incremental strain referred to the same
configuration, at time t. The linear portion, ejj in Eq. (2.9), corresponds to the
infinitesimal strains, used in linear analyses. The nonlinear portion, #ij in Eq. (2.10),
Is quadratic in displacement increments. Despite only using terms up to the second-
order with respect to displacements, the GL strain tensor has no approximations,

being valid for any level of deflections and deformations.
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(2.10)

The PKII stress tensor, Sij, is energetically conjugated with the GL strain
tensor, which allows both to be used together. Just like the GL tensor, the PKII
tensor is symmetrical and invariant for rigid body displacements. It can be obtained
from the Cauchy stress tensor, and its indicial expression to measure the stresses at
the current unknown configuration referred to the previous equilibrium
configuration is given in Eq. (2.11). Although it is used to measure stresses acting
on a body, the components of this tensor have no physical meaning. It is only used

to formulate the nonlinear problem, and it is not a result of interest in the analysis.

tritg P 9'x atXj trat (2.11)
[} I+Atp atmtxm 8t+mxn mn

Using the GL strain tensor and the PKII stress tensor, both referred to the

previous equilibrium configuration of time t, the expression of the internal virtual
work at the unknown configuration of time t + At, given in Eqg. (2.5), can be

rewritten as:

t i) t i)

8(+AtWI — J‘ t+AtS»~8t+Atg--d '[V (212)
v

This expression is equivalent to Eg. (2.5), but integrating over a known

volume of the body to calculate the internal virtual work at the configuration of time

t+At

t+ At. In this expression, the stresses , (S, , and strains, ""“{¢; , are unknown. Since

ij
the reference configuration for the GL and PKII tensors is the same, it is possible
to decompose them into a known term of strains and stresses that occur at the
configuration of time t, plus an unknown increment of these quantities in the

interval [t, t + At], also referred to the configuration of time t:

HAttgij = ttgij T 18 (2.13)
TS =S+ Sy (2.14)
The left superscript to indicate the configuration of the increments of GL

strains, (£, and PKII stresses, ¢ ;i , is not needed and has been dropped.

ijs
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It should be noted that the GL strains that occur at any configuration, referred

to that same configuration, are null (& =0). The strain increment can be

decomposed into the linear and quadratic portions with respect to the increments of

displacements in the interval (,&; = &, +77;), given in Eq. (2.9) and Eq. (2.10). In

t “ij
addition, the PKII stresses that occur at any configuration, referred to that same

configuration, correspond to the Cauchy stresses (,S i = ‘T ;). Therefore, the

incremental decomposition of strains and stresses can be expressed as:

t+At

tglj g = e + tnu (215)
t+At[Su TJ + tSij (2-16)
Replacing the incremental decomposition of strains and stresses into
Eq. (2.12), we arrive at the expression for the internal virtual work at the unknown
configuration of time t + At in terms of increments of strains and stresses referred

to the known configuration of time t, given in Eq. (2.17). Equation (2.18) is obtained
by multiplying the terms.

S, = 5( 7 +,S; ) (3,6 +8,7;)dV 2.17)

t ~ij

8t+AtW J. tZ' 5.e.d V + ‘_\[/ tTijStﬂijd V o+ J. tsugt‘gud v (218)

The external virtual work at the configuration of time t + At, given in Eqg.
(2.6), can be obtained from the integral of the external forces over the volume and
surface of any configuration of the analysis, since it is being considered that the
loads do not vary with the geometry (linearity in natural boundary conditions).
Therefore, this term, given in Eq. (2.19), will be treated the same as in a linear
analysis by the FEM.

6t+AtWE — J‘ t+At fiBSUid tV + .[ t+At fiSSUiSd tS + t+At fiaui (219)
iy 's

The general expression of the PVD application is given in Eg. (2.20), by
equating the internal and external virtual works at the configuration of time t + At.
This equation is valid for any level of displacements, rotations and deformations
that a continuous body undergoes since no approximation has been made to derive
it.

t i)~ t <ij trij

j S,8,6,dV + [ '7,8,77,d 'V =5 W, - j‘r 5.0,dV (2.20)
v
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2.3.3. Linearization of the Principle of Virtual Works

The solution of the general equation of the PVD, presented in Eq. (2.20),
cannot be obtained directly, as it is nonlinear with respect to the increments of
displacements in the interval [t, t + At]. It must be linearized, disregarding high-
order terms of displacement increments, in order to obtain a tangent approximation.
In that equation, the variation of the linear and nonlinear portions of the GL strain
increment are expressed, respectively, as:

1( . ou. ou.
5.6 = =| S 45— 2.21)
2\ 0 X 0 X

_1ou, 5 ou, +188uk.8uk

S ==
T2 O, 200 o',

(2.22)

Now, it is possible to observe that the second integral on the left hand side of
Eq. (2.20) is already linear in displacement increments. In that integral, the Cauchy
stresses at time t are known and the variation of the nonlinear portion of the GL
strains increment has two components, given in Eq. (2.22). In each component, the
virtual term is determined and multiplies a real linear term.

The integral on the right hand side is also linear. Again, the Cauchy stresses
at time t are known quantities as well as the variation of the linear portion of the
GL strains increment, as seen in Eq. (2.21). Therefore, the only term of Eq. (2.20)
that must be linearized is the first integral on the left hand side.

The increment of stresses are obtained from the constitutive law of the
material. In this work, it consists of a constant fourth-order tensor, Cijrs, that relates
the second-order tensors of stresses and strains (linearity in constitutive relations).
When the strain increments are considered very small, the following assumptions
may be adopted (Yang & Kuo, 1994):

tSij = Cijrs ters (223)
0,&; =0, (2.24)
Replacing these relations into the first integral of Eq. (2.20), we arrive at the

linearized equation of the PVD applied to configuration of time t + At based on the

UL formulation (referred to configuration of time t), for continuum mechanics:

{ Cirs (8,:0,8;,d "'V + {/ ‘7,8, m,d'V =8""W, - [ 'r;8,e,d 'V (2.25)

t™ij jti
v
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It should be noted that the integral on the right hand side is the internal virtual
energy of deformation corresponding to the configuration of time t. Since this is an
equilibrium configuration, the internal virtual energy is equal to the external virtual

work of the same configuration. Therefore, Eq. (2.25) can be rewritten as:

t™i)

j Cijrs 16::9.8;d V + j trijStnijd V =§""W, —5'W, (2.26)
v v

The first integral, obtained by linearization, corresponds to the component of

internal virtual energy of deformation that depends on the linear portion of the GL

strain tensor, called here as the linear component of internal virtual energy, SW,".

The second integral provides the nonlinear component of internal virtual energy,

SW,"*, which depends on the variation of the nonlinear portion of the GL strains.

It is important to mention that the linearized PVVD equation corresponds to the
linear system of incremental equilibrium equations resulting from the FEM
discretization. By applying the FEM, as it will be done in a later section, the internal
and external energy components of Eq. (2.26) can be expressed in terms of the
vector of nodal displacements of the element, {U}. It turns that the linear and
nonlinear components of internal virtual energy give origin to the elastic stiffness
matrix, [Ke], and geometric stiffness matrix, [Kg], respectively. The external virtual
work originates the vector of nodal loads, {P}, in the corresponding configuration.
Equations (2.27) to (2.30) show the results of the finite element discretization of

each energy component in terms of the nodal displacements of a generic element.

aw- = {3U}" [Ke]{U} (227)
aw,™ = {5U}' [K, J{U} (2.28)
54w, = {5U}" {*P} (2.29)

8W, = {3U}" {'P} (2.:30)

Substituting these expressions of finite element discretization into the
linearized PVD equation of the continuum mechanics, given by Eq. (2.26), we

obtain a discrete PVD equation:

(U ([KeJ+[K DU} = U (P} ~{'P}) 23y
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The virtual displacements are arbitrary and can be cancelled from both sides
of the equation. The tangent stiffness matrix of the element, [Kr], is identified as
the sum of the elastic and geometric stiffness matrices. Therefore, the linear system
of incremental equilibrium equations, resulting from the FEM application to the
linearized PVD equation, is given in Eq. (2.32), where {AP} is the increment of
nodal loads between times t and t + At.

[K; J{U}={aP} (2.32)

This linear system provides the increment of nodal displacements
corresponding to an increment of nodal loads, assuming a tangent approximation to
the nonlinear solution. The methods to solve the incremental system, including
iterative techniques to get rid of the error caused by the linear approximation, are
presented in the next chapter. The following sections are dedicated to obtaining the
tangent stiffness matrix (elastic and geometric stiffness matrices) of a two-
dimensional beam element. This is done by determining the linear and nonlinear
components of internal virtual energy in terms of the continuous displacement fields
of the beam element, and then applying the FEM to obtain the relations of Eg. (2.27)
and Eq. (2.28).
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2.3.4. Formulation for Two-Dimensional Beam Elements

The structural element of interest in this work is the beam element, with axial
and transverse behavior in a single plane. The xy pair of axes will be designated to
represent the longitudinal (axial) and transverse directions of the element. The
displacement components in these directions, at any point of the element cross-
section, are represented by the variables u(x, y) and v(x, y), and variables uo(x) and
vo(x) for the displacement components at the cross-section center of gravity. The
displacements of the center of gravity will be used to define the displacement field
of the reticulated element. In addition, the cross-section rotation is represented by
0(x). Figure 2.5 illustrates the displacement field in the interior of a beam element,

where L is the element length.

deformed configuration

Y

Figure 2.5 — Displacement field in the interior of a beam element (adapted from Martha, 2018)

According to Euler-Bernoulli beam theory, the rotation angle of the cross-
section can be approximated by its tangent and it is related to the transverse

displacement of the center of gravity as:

o(x) =2 ) (2.33)

The result of this consideration is that plane cross-sections remain plane and
normal to the element longitudinal axis after bending. Unlike Timoshenko beam
theory, the shear distortion is neglected, which leads to an approximation that
provides good results for slender elements. A comparison of both beam theories is
illustrated in Fig. 2.6.
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do,
dx
shear
Yy distortion: cross-section rotation
do, gl %
dx W\ Timoshenko theory

Figure 2.6 — Comparison between Euler-Bernoulli and Timoshenko bending theories (adapted
from Martha, 2018)

Considering Euler-Bernoulli beam theory, the displacement field in the
interior of the beam element can be expressed in terms of the axial and transverse
displacements of the cross-section center of gravity as:
vy (x)

OX
v(X,Y)=V,(X) (2.35)

The components of internal virtual energy of the linearized PVD equation,

u(x,y)=uy(x)—y-0(x)=u,(x)-y (2.34)

based on the UL formulation, will be determined for this type of element
considering the stresses and strains present in an Euler-Bernoulli beam. Since all
quantities in Eq. (2.26) are referred to the configuration of time t, the left indexes
will be dropped to simplify the notation.

In two-dimensional frame elements, there are two components of the Cauchy
stress tensor acting on the element cross-section, a normal and a shear component,
and two associated components of Green-Lagrange strains. These stresses and
strains components are written in vector form as shown below, with the strains

decomposed into the linear and nonlinear portions.

TXX 8)()( — eXX + nXX (236)
z-xy gxy exy nxy
According to Eg. (2.9) and Eq. (2.10), the linear and nonlinear portions of the

GL strains related to the axial and transverse displacements are:
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ou
exx—& (2.37)
1({( ou 2 oV 2
g —Lfou, ov 2.39
Y 2ley ox (2.39)
_Lfaueu, avov ”»
Ty =\ ax oy " ox oy (2:40)

Replacing the axial and transverse displacement fields of the beam element,
given in Eq. (2.34) and Eg. (2.35), into the previous expressions, the strains can be
written in terms of the displacements of the cross-section center of gravity:

ou, 0%,
=To_ 2.41
"o ox? (2:41)

2
1[(ou, Y avoj2 N au, &%,
2 Mo} [ Po ) 4y2| T | gy T OV 2.42
P 2[( axj (ax N ) V& (242)
e, =0 (2.43)
1( &*, ov, ov, ou,

==|y—2—0-—02 2.44
T 2(y X X ox X (244

The constitutive tensor is represented by the 2x2 matrix that relates the
vectors of stresses and strains components. For the case of a material with linear-
elastic behavior, this constitutive matrix is shown in Eq. (2.45), where E is the

elastic modulus and G is the shear modulus, which are constants during the analysis.

E O
2.
{O G} (249

The first integral on the left hand side of Eq. (2.26), is the term that provides
the linear component of the internal virtual energy of deformation (component that
depends on the linear portions of the GL strain tensor). Substituting Equations
(2.36), (2.41), (2.42), (2.43), (2.44), and (2.45) into that integral, and recognizing
that [,dA=A, [,ydA=0,and |, y’dA=1,where Aand I are respectively the area

and moment of inertia of the cross-section, the linear component of internal energy
can be developed as follows. A typical assumption of the small strain analysis is

that the cross-section properties of area and moment of inertia remain constants.
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SW," = .[ Cirsrs0e;dV = .[ Ee,de,dV + X (2.46)
v v v
L au azv au 62V
SWLE=[[El =2 —yZ20 || §220 _ v§ 29 |dxdA 2.47
UGS @
L L 2 2
ow = JEAL 5% g 1 25 Do o (2.4
o OX o o OXT X

The nonlinear component of internal virtual energy (component that depends
on the variation of the nonlinear portions of the GL strain tensor) is provided by the
second integral on the left hand side of Eq. (2.26). By decomposing the stresses and

strains of that integral into axial and shear components, as in Eq. (2.36), we obtain:
W™ = [7,8n,dV = [7,87,dV + [z, 87,dV (2.49)
\% \% \%

This expression can be developed by including or not the second-order
gradients of the nonlinear portions of the GL strain tensor. The result of this
consideration will be reflected in the degree of sophistication of the element
geometric stiffness matrix. Disregarding the high-order terms of the nonlinear

portions of GL strains, the following approximations are adopted:

1((ou, Y (v, )
= — B — E — :0 .
» 2[( o j +( axj My (2.50)

Using these approximations in Eq. (2.49), we obtain a simplified expression

for the nonlinear component of internal energy:

W' =] frms[l[(%j +[%] B dxdA (2.51)
AD 2|\ ox OX

Otherwise, if all terms of the nonlinear portions of GL strains are considered,
as in Eq. (2.42) for axial strains and Eq. (2.44) for shear strains, the expression of

the nonlinear component of internal energy becomes:

2
1[(au, Y avoj2 N ou, 6%
=+ =1+ —2y—2—2 | |dxdA+
2[( axJ (ax % Vo o (2.52)
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Consider the equilibrium relations of Eq. (2.53), where P, Q, and M are the
resulting axial force, shear force, and bending moment in the element cross-section.
Then, the development of the simplified and high-order expressions of the nonlinear

component of internal energy results in Eq. (2.54) and Eq. (2.55), respectively.

{TXXdAZP {Z’XydAIQ _LTXX (—y)dAIM (2.53)
Sw, M —%TLP-S{(%) +[%) de (2.54)
8W|NL —

L 2 2 2 2
lj P-5 (%J +[%j +ﬂ-8 8\/20 dx +
2% OX OX A OX (2.55)
L 2
j M-S 8\/20% _Q.SK%%] dx
0 oX® OX OX OX

2.3.5. Finite Element Discretization

The use of the Finite Element Method aims to discretize the continuous
displacement field of the elements into nodal degrees-of-freedom. Each node of a
2D beam element has three degrees-of-freedom, two translations and one rotation.
Figure 2.7 indicates the six nodal displacements of a beam element (translations

! ! ! !

x1: dy1 » dyz, dyp, and rotations 64, 6,) that moves and bends in a single plane, in
the directions of the degrees-of-freedom in the local axis system of the element.
The local displacements are identified by a single quote mark and they are grouped
in vector {d} of Eq. (2.56). Notice that the rotation components about the out-of-

plane z-axis are the same for local and global axis systems.

Figure 2.7 — Nodal displacements of a plane beam element in its local axis system

{d}={d, d, o d, d, o} (2.56)
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These nodal displacements are split into axial and flexural components. Axial
displacements act in local x-axis direction and they are grouped in vector {u} of Eq.
(2.57). Flexural displacements are the transverse components that act in local y-axis

direction and the in-plane rotations, which are grouped in vector {v} of Eq. (2.58).

fuy={a, d) @57

X2

(vi={d;, 6 dj, 6, (2.58)

Shape functions are used to interpolate the displacements and rotation along
the length of the element with the nodal values. Each interpolating shape function,
Ni(x), represents the deformed configuration of the element when a unit
displacement or rotation is imposed to the corresponding degree-of-freedom.
Therefore, the axial and transverse displacements of the cross-section center of
gravity can be written in terms of the nodal values and interpolating functions, as
illustrated in Fig. 2.8 for each elementary deformed configuration. The nodal values
of displacements and rotations are the unknowns of the discrete problem, since the

shape functions are pre-defined for each element type.

o (x) o (x)
U (%) = Ny (x). dy Up(x) = Ny(x). dey
d;l_jJ/: ‘lv X2
dq ]l X i X
dx2
o (x) v (x)
vo(x) = Ny(x).dyy vo(x) = Ns(x).dj,
(%) I 2o(x) L *
vo(x) = N3(x). 6,
6, vo(x) = Ng(x). 6, lf

T [I‘ X \y X

Figure 2.8 — Interpolation of elementary deformed configurations

The interpolation of the displacement fields of the beam element is obtained

by superposition of the elementary deformed configurations:
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Up (X) =N, (x)-d}, + N, (x)-d}, (2.59)
Vo () = N, (X)- 0y + Ny ()-8, + Ny (x)-d7, + Ny (x)6, (2.60)
These interpolations are written in vector form as follows:
0 (=M N (O} =) ) 2o
dj,
W= 00 MO0 M) NG =N e
0,

In the case of beam elements, the shape functions usually employed to
interpolate the element displacements are obtained from the homogeneous solution
of the differential equations that govern the axial and flexural behaviors of the
element. In a first-order analysis, the differential equation of beam elements,
formulated for an undeformed infinitesimal element, is a second-order equation for
the axial behavior and a fourth-order equation for the flexural behavior. Therefore,
the shape functions are linear for axial displacements interpolation and cubic for
flexural displacements interpolation (also known as Hermitian functions). The

results for the axial shape functions, which do not depend on the adopted bending

theory, are:
N (x) =1—% (2.63)
N, (x) =+ (2.64)

The Hermitian shape functions for interpolating flexural displacements of
beam elements that follow Euler-Bernoulli bending theory are:
2

3
Nz(x)zl—?x2+ﬁx3 (2.65)
Ns(x)zx—%x2+éx3 (2.66)
3 2
N (x)= sz _FXB (2.67)
N, (x) Sl le (2.68)

L L
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Since the shape functions represent the exact solution of the differential
equations of beam elements, no approximation is made in the interpolation of the
displacement fields to the nodal points, providing analytical results for first-order
analyses. Therefore, in a linear analysis, the discretization of beam elements into
multiple sub-elements is not needed because it does not change the results.

In a geometrically nonlinear analysis, these interpolating functions do not
represent the exact deformed configuration, as they are the solution of differential
equations formulated for small displacements. In this case, elements refinement are
necessary to converge for better results. However, if the differential equation of
bending behavior is formulated considering the equilibrium of an infinitesimal
element in its deformed configuration, the resulting shape functions can better
represent the nonlinear solution by including the internal axial force in their
expressions. Rodrigues (2019) developed shape functions based on this assumption
for Euler-Bernoulli and Timoshenko bending behaviors. These complete shape
functions are not reproduced here due to their complexity and size, but can be found
in the referred work.

Based on the presented expressions of internal energy and shape functions,
the local tangent stiffness matrix of an Euler-Bernoulli beam element is obtained in
the following sections. The tangent stiffness matrix is composed of a linear (or
elastic) portion, which depends on the elastic properties of the elements, and a
geometric portion that depends on the elements internal forces to account for
geometry changes. The elastic stiffness matrix is the same used in a linear-elastic
analysis. The development of the geometric stiffness matrix takes into account the
degree of sophistication of the adopted shape functions and the inclusion, or not, of
high-order terms of the nonlinear portions of the GL strain tensor to the expression
of the virtual energy of deformation. Accordingly, different forms of the geometric
matrix can be obtained, as shown in the sequence.

The local tangent stiffness matrix of each beam element is used to assemble
the global stiffness matrix of the structure. The assembly process is identical to a
linear analysis, using the Direct Stiffness Method to rotate each local matrix to the
global axis system and insert the stiffness coefficients to the correct position of the
global tangent stiffness matrix. This process is slightly covered in Section 4.2.2, but

details can be found in almost any book on matrix structural analysis.
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2.3.5.1. Elastic Stiffness Matrix

The elastic stiffness matrix is obtained from the linear component of virtual
internal energy, given in Eq. (2.48). Applying the interpolation of axial and
transverse displacements, as in Eq. (2.61) and Eq. (2.62), it is possible to rewrite
the expression of virtual internal energy in terms of the vectors of shape functions

and nodal displacements:

SW' =
o{N,} o{N.}

{SUV{IEA e d{ku}+
{SV}T E[ £l 0? {NV} 0° {NV}T dx:l{v}

(2.69)

ox’ ox’

Using the shape functions given in Eq. (2.63) to Eq. (2.68) and integrating the
terms inside the brackets of Eq. (2.69), the elastic stiffness coefficients are obtained.
The first integral results in the stiffness coefficients related to axial degrees-of-
freedom, while the second integral gives the stiffness coefficients of flexural

degrees-of-freedom. The complete elastic stiffness matrix of an Euler-Bernoulli

beam element is shown next, including all degrees-of-freedom:

EA 0 0 _EA 0 0
L L
12El  6EI 12El  6El
0 E 12 T K
0 951 4El 0 _§E; 2El
[k.]= n L L n L L (2.70)
_=A 0 0 i 0 0
L L
12El  GEI 12EI 6EI
N T E
0 §§l 2El 0 _95; AEl
i L L L L]

2.3.5.2. Geometric Stiffness Matrices

The geometric stiffness matrix is originated from the nonlinear component of
virtual internal energy, using the simplified expression of Eq. (2.54) or the high-

order expression, which considers all terms of the Green-Lagrange strains, shown
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in EQ. (2.55). In both formulations, it is possible to adopt the Hermitian or the
complete shape functions to interpolate the field of transverse displacements, giving
rise to different geometric matrices.

Considering the simplified expression of internal energy, the interpolation of
axial and transverse displacements can be applied to Eq. (2.54), so the nonlinear
component of virtual internal energy is expressed in terms of the vectors of shape

functions and nodal displacements:

SWMN =
T{IPa “}T dx]{u}+
T [I P o V}T dx]{v}

Doing the same for the high-order expression of internal energy, Eq. (2.55)

(2.71)

can be expressed in terms of shape functions and nodal displacements as:

SWINL —

{SV}T IP_A! 828{X|\Z|\,} 0° {a)l:|2v} dX]{V}+

(2.72)
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Three types of geometric matrix are used in this work, based on the simplified
or high-order expressions of internal energy: Small Rotation 2" Order (SR20),
Large Rotation 2" Order (LR20), and Large Rotation 4" Order (LR40).

The SR20 geometric stiffness matrix is originated from the simplified
expression of internal energy, using the Hermitian shape functions for interpolating
flexural displacements. This matrix, resulting from the integration of axial and
flexural terms of Eq. (2.71), is given in Eq. (2.73). This is the simplest and most
usual geometric stiffness matrix for two-dimensional frame elements with Euler-

Bernoulli bending behavior, which considers only axial force effects.

P 0 0 P 0 0
L L
o %P P, &P P
5L 10 5L 10
o P 2L P PL
10 15 10 30
[ke]sm: 5 o (2.73)
- 0 0 T 0 0
g ¢ P, 6P P
50 10 5L 10
o P PL P 2P
i 10 30 10 15 |

The LR20O matrix, used by Chen (1994), is obtained from the high-order
expression of internal energy, using again the Hermitian shape functions for
interpolating flexural displacements. The integration of the first two terms of Eq.
(2.72) results in the same stiffness coefficients of the SR20 matrix, which account
only for axial force effects. The integration of the additional terms results in the
stiffness coefficients that correspond to the interaction between axial force and
bending behavior, in order to better capture the geometric nonlinearity.

Considering a constant shear force over the length of the element, the internal
bending moment and shear force can be expressed as a function of the bending

moment values at the ends of the element as:

Q:_M1+M2 (2.74)
L
M =M, + Mt My (2.75)
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Integrating the terms of Eq. (2.72), with the Hermitian shape functions, and
expressing the shear force and bending moment as in Eq. (2.74) and Eq. (2.75), the

stiffness coefficients are combined into a single geometric stiffness matrix as

follows:
k k
[kelm—[[ ok [G]Z] 79
[kG]z [kG]s
b ) M,
L L
6P 12P1 P 6PI
k1= o 2E = 2.77
[ke 5L AL 10 AL @17)
M, P 6Pl 2PL 4PI
-—— —+ +
| L 10 A 15 AL |

P 0 M,
L
6P 12PI P 6Pl 2.78)

0 - T2

5L AP 10 AL
M, _P 6P _PL 2P|
L

P 0 M,
L L
kL= 0 Z+r Az @79)
M, P 6Pl 2PL 4P|
L 10 AL? 15 AL |

Finally, to obtain the LR40O geometric stiffness matrix, the complete shape
functions for flexural displacements, presented by Rodrigues (2019), must be
applied to the high-order expression of internal energy. This matrix can be found in

the referred work.
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2.4.Corotational Formulation

As a frame structure is loaded and moves from its original configuration, each
beam element is subjected to three types of motion: it translates, rotates, and
deforms. The rotation and translation are rigid-body motions, which do not generate
internal forces and may be removed from the total motion of the beam. Thus, the
idea of the Corotational formulation is to separate rigid-body modes from local
deformations. The initial configuration is used as reference to measure rigid-body
motions in the global axis system, which remains stationary. A corotated
configuration that continuously translates and rotates with the element is used as
the reference to measure deformations in a local axis system, called natural system.
With respect to the corotated configuration, the rigid-body motions are null and
only the relative displacements that cause deformations to an element are present.

When using this formulation, the relative displacements, measured in the
natural system, can even be considered small. Therefore, the element can be
formulated as linear (infinitesimal strains) in the natural system, with the geometric
nonlinearity being introduced in the transformation between the reference systems.
In this case, the formulation can handle arbitrarily large rigid motions, with small
deformations along the element. Such characteristic turned the Corotational
formulation popular for analyses with finite motions but small strains, especially
for structural elements such as beams, plates and shells.

Based on this approach, the tangent stiffness matrix of a two-dimensional
Euler-Bernoulli beam element, subjected to large displacements/rotations but small
deformations, is developed in this section. The presented theory follows the works
of Crisfield (1991), Souza (2000), and Baido (2017).

2.4.1. Global and Natural Systems

As previously mentioned, the corotated configuration uses a local system to
which the deformations of the element are measured. This local system moves with
the element and is called natural system. Figure 2.9 shows the initial, deformed, and
corotated configurations of a beam element, as well as the displacement
components in global and natural systems. The global nodal coordinates of the
initial configuration are defined as (xi, y1) for the first node, and (x2, y2) for the

second node.
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Deformed

configuration
dyZ

y(x2, y2)
dyl
Y

LAX (x1, y1)4

Figure 2.9 — Displacements in global and natural systems

The total displacements of the element degrees-of-freedom, with respect to
the initial configuration, are measured in the global axis system XY. These
displacements (translations d,, dy; , dx,, d,,, and rotations 6,, 8,) are grouped in
vector {dg} of Eq. (2.80).

The natural system has three components of displacements that effectively
cause strains and stresses in the element. They are an elongation, un, with respect to
the initial configuration, and two relative rotations to the corotated configuration,
6n1 and Gn2. The displacement components of the natural system are grouped in
vector {dn} of Eq. (2.81).

ld,}={d, d, o d, d, 6, (2.80)

{(d}y={u, 6, 6,}) (2.81)

The element elongation, responsible for axial deformation, is given by the
difference between the lengths of the element in the corotated and initial
configurations, according to Eq. (2.82). The element length can be obtained directly
from the nodal coordinates in each configuration, according to Eq. (2.83) and Eq.
(2.84).
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u,=L-L, (2.82)
Lo =% %) +(¥,~ v, (2.83)
L= () (0, -(va )] @89

The nodal rotations relative to the corotated configuration, responsible for
flexural deformations and the arising of bending moments and shear forces, are
obtained from the difference between the total rotation of nodes and the rigid-body
rotation of the element, a, according to Eq. (2.85) and Eq. (2.86).

The rigid-body rotation is the angle between corotated and initial
configurations. It can be obtained from the initial length of the element and the total
displacements, according to Eq. (2.87). However, as explained in Section 4.2.3, in
a computer implementation, the use of the arctangent function has some limitations.
Hence, it is more appropriate to calculate the difference between the angles of the
reference configurations (corotated, P, and initial, o), in which the corotated
configuration angle is incremented in small values. Souza (2000) also proposed an

efficient way of calculating the rigid-body rotation with no limitation to its value.

0,=0,—a (2.85)
0,=0,-a (2.86)
d,—d
a=B-B,= tanl[Loerij——yij} (2.87)
X2 x1

The nodal forces corresponding to the displacement components of the two

reference systems are shown in Fig. 2.10.

(b)

Figure 2.10 — Force components in (a) global system and (b) natural system


DBD
PUC-Rio - Certificação Digital Nº 1712771/CA


PUC-Rio- CertificagaoDigital N° 1712771/CA

66

The nodal forces in global system (forces fxq, fy1, fx2, fy2, and bending moments
M1, M), acting in the same directions of the global displacements, are grouped in
vector {f;} of Eq. (2.88). In the natural system, three force components are
generated from the natural displacements, an axial force P, and two bending

moments, M1 and M>. These components are grouped in vector {f,} of Eq. (2.89).
T
{fh={fa fo M £, £, M} (2.88)

(f1={P M, M} (2.89)

Using nodal displacements and forces in both reference systems (global and
natural), the tangent stiffness matrix of the beam element will be derived. The
tangent matrix relates the displacements and forces of the element degrees-of-
freedom in global system. In fact, due to its nonlinear character, the tangent matrix
relates displacement increments to force increments, hence the term “tangent”. In
other words, it involves the variation of these quantities.

The relation between the variations of the global displacements, {6dq}, and
global forces, {ofy}, is obtained from the relation between the variations of other
global and natural quantities, indicated in Fig. 2.11:

e (1): natural displacements, {6dn}, and natural forces, {ofn}.
e (2): natural displacements, {6dn}, and global displacements, {ddq}.
e (3): natural forces, {6fn}, and global forces, {5fg}.

@ {(6d,}

(o4}

{51‘9} = [k]{5dg} @

{615} © {(6f)

Figure 2.11 — Relations between variations of global and natural quantities
The next sections are dedicated to the development of these relations for

obtaining the tangent stiffness matrix of a two-dimensional Euler-Bernoulli beam

element in the global system (indicated by [K] in Fig. 2.11).
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2.4.2. Displacements and Forces in Natural System

Assuming linear-elastic material behavior, Hooke's law is used to relate
stresses and strains. The displacements and rotations measured with respect to the
corotated configuration can be considered small, so engineering strain is used.
Furthermore, the cross-section area is considered constant (typical assumption for
small strain problems). Therefore, the axial force is related to the element

elongation as:

EA
=—u
L,

Similarly, using standard structural analysis results it is possible to show that

p (2.90)

the end moments of the beam are related to the nodal rotations as follows:

m,=2Elg +2Elg (2.91)
Lot

m,=2Elg L2ElLg (2.92)
Lo

Equations (2.90), (2.91), and (2.92) can be written in matrix form as in Eq.
(2.93), where [Cy] is the matrix of linear-elastic stiffness coefficients that relates
displacements and forces in natural system:

P EA/L, 0 0 u,
M= 0 4B 28I o, (299)
M, 0 2EI/L, 4EI/L,||6,

{f.)=[C.]{d,} (2.94)

Finally, the variation of the natural forces are related to the variation of the

natural displacements as:

5P EA/L, O 0 Su,
M, t=| 0  4El/L, 2El/L, |{80, (2.95)
M, 0 2EI/L, 4EI/L, |56,

{5f,} =[C,]{5d, ) (2.96)
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2.4.3. Displacements in Natural and Global Systems

To find a relation between nodal displacements in natural and global systems,
consider a small movement (variation 6d) from the corotated configuration, as
shown in Fig. 2.12. In that figure, e is the unit vector from first to second node; e
is the unit vector orthogonal to e:1 (such that the cross product is an out-of-plane
vector); dun and da are, respectively, the variations of element elongation and rigid-

body rotation.

Figure 2.12 — Variation from the corotated configuration

The components of the unit vectors and the movement variation, in the global

axis system, are:

cosp —-sinp dd,, —aod,,
= e, ;= 8d = X X (2.97)
te {sinﬁ} tea} { cosB} t8d] {dez—édyl
The small movement in the axial direction (variation of element elongation)
can be determined by the scalar product between the unit axial vector and the

movement variation, which gives the component of 6d projected along the direction

of es;

du, ={e,} {8d} (2.98)

By multiplying these vectors and organizing the terms, the relation between
the variations of element elongation and global nodal displacements is obtained as

follows:
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du, = cosp-8d,, —cosP-8d,, +sinp-8d,, —sinf-5d,, (2.99)

5d,,
5d,,
50,
5d,,
3d,,
50,

u, ={-cosp —sinp 0 cosp sinp O} (2.100)

du, ={r}" {ad, | (2.101)

The variation of rigid-body rotation gives, for an infinitesimal angle change,
an arc-length change of:

L-So={e,} {5d} (2.102)

By developing this equation, the relation between the variations of rigid-body

rotation and global nodal displacements is obtained as follows:
Sou = %(—sin B-3d,, +sinp-8d,, +cosp-3d,, —cosp-3d,, ) (2.103)

5d,,
5d,,
50,
5d,,
5d,,
50,

Sa:%{sin[& —cosp 0 -sinp cosp 0} (2.104)

1,7
8o = ={z} {ad,} (2.105)

The variation of the relative nodal rotations, in which we are interested in, is
given by the difference between the variations of total nodal rotations and rigid-
body rotation:

50, =56, —5a. (2.106)

50,, =80, —da (2.107)
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Expressing the nodal rotations in terms of the vector of global displacements
and using Eqg. (2.105), the previous equations can be rewritten as:

1

80,={0 0 1 0 0 O}{Sdg}—E{Z}T{Sdg} (2.108)
80,={0 0 0 0 0 1}{6dg}—%{z}T{8dg} (2.109)

The relation between variations of relative rotations and global nodal

displacements is then:
50 1 72\
a|_|[0 0100 0] 1{z7 {sd,) (2.110)
36, 0 00O0O0T1 L {Z}T ¢

30, T
{Senz}:[A] (50, 2.11)

Combining Eq. (2.101) and Eq. (2.111) into a single matrix form, we arrive

at the relation between the variation of natural and global displacements:

du, T
80, = [{r}T ]{Sdg} (2.112)
50,,] LA
{od,}=[T7] {ad,} (2.113)

The matrix [T], whose transpose relates the variation of natural and global
displacements, is identified in Eq. (2.114). This transformation matrix is the same
that relates natural and global forces, and it consists of an expansion and a rotation
from the natural system to the global system, as seen in the next section.

[ —cosp  —sinB/L —sinB/L |
—-sin  cosB/L  cosB/L
0 1 0
= 2.114
7] cosf3 sin/L  sinf/L ( )
sinp —cosp/L —cosB/L
0 0 1
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2.4.4. Forces in Natural and Global Systems

To relate force components in the natural system to the components of the
global system, first a relation between forces in natural and local systems will be
established. Figure 2.13 shows the force components in natural system, in red, and
the nodal forces in local axis system, in green.

fy2
Y, y\ T
\ \_—Fp
f)ﬁl 1 Mz
P M,

Figure 2.13 — Force components in natural and local systems

It is clear that the local axial force components, f;, and f,.,, are related to the

natural axial force P as:

f/ =—P f,=P (2.115)
Considering a constant shear force along the element and verifying the

equilibrium of moments at each node, the local transverse force components, fy;

and fy,, can be expressed in terms of the end moments as:

gr =Mt M, M +M, (2.116)

y2 L
Using Eq. (2.115) and Eq. (2.116) and noticing that the bending moments are
common to natural and local systems, the relation between the force components of
both systems is given in Eq. (2.117). The matrix [B] is identified as an expansion

matrix from natural to local system.

fal T-1 0 0]

fy 0 YL YL,

Moo b oy (2.117)
f) 1o oy

., 0 1YL -yL|'*

M,] L O 0 1 |

{fi}=[B]{f.} (2.118)
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Now, a relation between nodal forces in local and global systems will be

established. Figure 2.14 shows the nodal forces in local axis system, in green, and

in global axis system, in blue.

fyz fyz

Figure 2.14 — Force components in local and global systems

The equilibrium of forces at each node provides the following relations:

f,=f,cosp— fy’1 sinf3

f,o=fisinB+ f) cosp

f.=f,cosp—f/,sinp

f,, =f,sinB+ f,cosp

(2.119)
(2.120)
(2.121)

(2.122)

Since bending moment components are the same for local and global systems,

the relation between local and global nodal forces is given in Eq. (2.123). The

matrix [R] is identified as a rotation matrix from local to global system.

[ cosp
sinf
0

0
0
0

—-sinf
cosp
0

0
0
0

0
0
1
0
0
0

0

0

0
cosp
sinf3

0

0
0
0
—sinf
cosf
0

R O O O O o

fa
f
Ml
fx’2
f,

MZ

(2.123)

(2.124)
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By substituting Eqg. (2.118) into Eq. (2.124), the relation between force
components in natural and global systems is obtained in Eq. (2.125). The product
of the rotation matrix [R] by the expansion matrix [B] results in the transformation

matrix [T], previously given in Eq. (2.114).

{fo}=[RI[B]{ .} (2.125)

AN 2126)

The [T] matrix is the same whose transpose relates the variation of natural
and global displacements. This corresponds to the Principle of Contragradiency of
structural analysis. Therefore, the relation of Eq. (2.126) could also be derived from
the PVD, considering that the work performed by forces going through virtual
displacements in the global and natural systems is equal. This is seen in Eq. (2.127),
where virtual work must hold for an arbitrary virtual displacement, which can be

canceled from the first and last terms of this equation, resulting in Eq. (2.126).

T T T
{ad,}' { £, ={5d, )" {,} =([T]T {Sdg}) (fh={sd,} [T]{f,)  12D)
Once the relation between natural and global forces is known, the variation
of these quantities, in which we are interested, is then obtained by the product rule:

{8} =[T](sF, 1 +[8T]{f,} (2.128)

To use this expression, it is necessary to determine the variation of the
transformation matrix, [6T]. The variation of each column of the transformation
matrix will be obtained separately. For the first column, {T1}, the variation is

developed as follows:

(8T} =8{-cosp —sinp 0 cosp sinp O} (2.129)
(8T} ={sinp —cosp 0 —sinp cosp O} & (2.130)
{8T,} ={z)5p (2.131)

Observing that 6p = 6a and using Eq. (2.105), the variation of the first column

of the transformation matrix is:

(8T} :%{z}{z}T {od, } (2.132)
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The second and third columns, {T-} and {T3}, can be written as:

1

{Tz}:_t{z}+{0 0100 of (2.133)
{Tg}z—%{z}+{o 00001 (2.134)

The variation of the constant vectors in these equations is zero, so the
variation of the second and third columns is equal. Using the product rule:

1 1 1

{0T,} ={8T.} = 5(—E{Z}) = 5(—Ej{2} +(—Ej{82} (2.135)

In the previous expression, it is necessary to find 8(-1/L) and {6z}. The former

is developed using the chain rule:
a(_EJ — oLt (-L7L) =L (2.136)
L L

Since 6L = 8Lo + dun and Lo = 0, and using Eq. (2.101) to express dun, the
following result is obtained:

1 ou, 1 T
8(—EJ= o= {ad,} (2.137)
To find {6z}, it should be noted again that 6p = da, and Eq. (2.105) is used to
express oo
{8z} =5{sinp —cosp O -sinp cosp O} (2.138)
{8z} ={cosp sinp 0 —cosp -sinp 0} 3p (2.139)
{62}=—{r}6a=—%{r}{z}T {5d,} (2.140)

Replacing Eqg. (2.137) and Eg. (2.140) into Eq. (2.135), the following
expression is obtained for the variation of the second and third columns of the

transformation matrix:

1 T T
{6T2}={8T3}=g({2}{r} +{rH{z}" ) {sd, } (2.141)
Now that the variation of the transformation matrix is determined, the relation
between the variation of natural and global forces, given in Eq. (2.128), is

completely defined.
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2.4.5. Tangent Stiffness Matrix in Global System

All the necessary relations between global and natural quantities have been
established in the previous sections in order to develop a variationally consistent
tangent stiffness matrix in the global system. These relations are illustrated in Fig.
2.15, where the bold equation indicates the unknown relation that is being sought.
This unknown relation is provided by the tangent matrix, which can be defined as

the differentiation of internal global forces with respect to global displacements

(8d,} = [T17{5d,)

(6d,} {6d,}
{6f 4} = [K){od,} {6fn} = [Cl{6dy}
{6} {6f,}

{6fg} = [TNH{8f} + [6T1{f,}

Figure 2.15 — Established relations between the variations of global and natural quantities

Equation (2.128), at the bottom of Fig. 2.15, is rewritten by separating the

columns of [8T]:
[8f, ) =[T]{(5f,} + P{8T,} + M, {8T,} + M, {6T,} (2.142)

Equation (2.96), on the right side of Fig. 2.15, is used to replace the natural
forces in the previous expression. In addition, Eq. (2.132) and Eqg. (2.141) are used
to express the variation of the transformation matrix columns in terms of the

variation of global displacements. The result is:

{of, f =[T][C, ]{3d,} +

P M, +M,

T {ody = ({2 )+ () ) o, )

Equation (2.113), at the top of Fig. 2.15, is used to replace the variation of

(2.143)

natural displacements in the first term on the right hand side of the previous

expression:

{ng} :[T][Cn][T]T {6dg}+
L M, +M,

" (2} (2} {od, )+

(2.144)

({ZH{r}" +{r}{z)" ) {80}
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Observing that {ddg} is a common factor, the relation between variations of
global forces and global displacements is finally obtained:

P M, +M

{ng}:{[T][Cn][T]T+t{z}{z}T+%({z}{r}T+{r}{z}T)}{8dg} (2.145)
where the tangent stiffness matrix is identified as:

P M, +M

[=[TNCJTT + Sty + Mot (e i) @140

This expression provides the tangent matrix of a beam element already in the

global axis system. It does not need to be rotated before it is inserted into the global

system matrix. The result of multiplying all terms of the tangent matrix expression

is:
i kl _ks _ks _kl ks _ks
kz 4 3 _kz k4
[k] _ k? ks _k4 ke
kl _ks ks
symm K, —k,
L I(7 i

=| EAL (cosB) + NLL, (sm |3) (M1 + Mz)'—o cosBsin B + 12El (sin B)Z)/(LZL()) (2 147)

EA smB) +NLL, (cosﬁ) 2(M, +M, ) L, cosBsinp + 12EI (cosﬁ)z)/(LzLO)

o
o= (e
(NLL cossinp— (M, + |v|2)((cos,[;)2 ~(sin B)Z) L, +cosﬁsinB(12El - EALZ))/(LZLO)
o = (61 cosp) /(LL,)

;= (e smp) ()

= (281)/1

= (e8)/1,

It is interesting to notice that, in Eq. (2.146), the first term, which depends on
the matrix of linear-elastic stiffness coefficients [Cy], corresponds to the elastic
stiffness matrix. The remaining terms, which depend on element forces, originate
the geometric stiffness matrix. Considering a beam element aligned with the global
axes (B = 0), i.e., accounting only for the expansion from natural to local system,

the result for the elastic and geometric stiffness matrices are respectively:
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12E|
2L,

symm

symm

o _EA
L,
6EL
L,
4El 0
Lo
EA
L,
0
(M +M,)
LZ
0
0

0 0
_12EI GE
UL, LL
_6El 261
L, L
0 0
12EI _GE
UL, L
4E1
L,
(M +M,) o_
L2
P 0
L
0 0
(M, +M,) 0
LZ
P 0
L
0
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(2.148)

(2.149)
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3. Solution Methods

3.1.Introduction

In the previous chapter, the local stiffness matrices of plane beam elements,
subjected to large displacements and large rotations, were deduced. These matrices
include elastic and geometric stiffness coefficients, to compose the tangent matrix
of the element, which relates the displacements and forces acting on nodal degrees-
of-freedom. The global tangent matrix of the model is assembled by a usual direct
stiffness process, adding the stiffness coefficients of each local matrix to the
corresponding degree-of-freedom of the global matrix, as well as in a linear
analysis. However, in this case, a system of nonlinear equilibrium equations is
obtained to account for the deformed geometry of the structure.

The system nonlinearity lies in the fact that the evaluation of the tangent
stiffness matrix, at any equilibrium configuration, depends on the deformed
geometry of the structure and the internal forces of the elements. Such properties
are obtained from the nodal displacements, which are the unknowns of the problem.
Therefore, it is not possible to solve the system of equilibrium equations
analytically, and it needs to be treated numerically.

In addition to a consistent and well-developed nonlinear formulation, a well-
implemented solver for the system of equilibrium equations is equally important
for obtaining the correct answers to the structural problem. At first, iterative
methods for solving systems of nonlinear equations, such as the Newton-Raphson
method, could be applied to find the displacements corresponding to the externally
applied loads. This is because, considering only the geometric nonlinearity, the
equilibrium configuration corresponding to a given load level does not depend on
the history of the structure response.

However, directly calculating total displacements from the total applied loads
Is not a good practice. Firstly, there is no prior guarantee that the structure will
withstand the applied loads, and may present critical points in the solution

associated with instability phenomena, which would not be detected in a direct
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analysis. Besides that, iterative algorithms for solving nonlinear systems need an
initial solution (initial equilibrium configuration) close to the final answer to be able
to converge correctly, without numerical instability problems. Therefore, even for
an analysis without dependence on the history of equilibrium configurations, the
numerical approach must be such that it is possible to follow the equilibrium path
of the structure to the desired load.

The practical way to solve the nonlinear system of equations and follow the
equilibrium path is by an incremental analysis. This methodology consists of
applying the total load in a series of increments for which the corresponding
displacement increments are obtained by direct or iterative solution of an
incremental linear system. Thus, a step linearization is performed, approximating
the nonlinear relation between applied loads and nodal displacements through one
or several linear analyzes in each step.

This chapter presents two categories of incremental methods for solving the
nonlinear equilibrium system. The first is the purely incremental, or single-step,
methods in which a single stiffness matrix is used to represent the load-
displacement relation in each analysis step. The second is the incremental-iterative
methods, which perform various linear analyzes to iteratively solve the incremental
system at each step, in order to converge to the equilibrium solution within a
numerical tolerance. A quick review of concepts about equilibrium paths, critical
points and stability is provided first. These concepts are important to the rest of the
chapter.

3.2.Equilibrium Path, Critical Points, and Stability

The equilibrium path of a structural model is the graphical representation of
the solutions of the equilibrium system, for various levels of the applied loads (or
other external solicitations). Normally, the plotted curve gives the value of a
representative displacement of the model, associated with one of its degrees-of-
freedom, versus a load factor. The representative displacement of a model depends
on the study to be performed. This displacement should be able to capture the
phenomenon of interest and its choice involves the analyst's prior knowledge of the
structural behavior. By studying the equilibrium path, many aspects of the nonlinear
response of the structure can be evaluated.
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In a linear analysis, the equilibrium path is a straight line with no load limit.
On the other hand, nonlinear formulations provide paths that can be complex curves
with critical points and multiple responses to a given load level, or even no real
response, since nonlinear equations have multiple roots in the complex domain. The
curve that passes through the initial configuration of the analysis (the origin of the
diagram) is called the fundamental, or primary, path. This path extends to the so-
called critical points, where it connects with secondary, or post-critic, paths. Most
structures are designed to work on the fundamental path. However, the study of the
complete post-critic solution is important to determine how the structure behaves
In emergency situations, and to assess its stability conditions.

Analyzing only the equilibrium of a structure is not sufficient for a safe
project because an equilibrium configuration can be stable or unstable. Instability
phenomena generate sudden changes in geometry and in the distribution of internal
forces that can lead to catastrophic failures. Therefore, stability criteria should often
be used, in addition to strength criteria, especially for slender elements where
instability may occur in the linear-elastic regime. The study of the stability of
structures is closely linked with the characteristics presented by their equilibrium
paths. It is possible to identify, for example, the sign of the effective stiffness
(tangent of the curve) in different equilibrium configurations, which may indicate
the stability condition. A negative stiffness is necessarily associated with an
unstable equilibrium configuration, while a positive stiffness is necessary, but not
sufficient, for a stable equilibrium. Details on stability criteria are beyond the scope
of this work. References for this subject are the books of Bazant & Cedolin (2010),
Timoshenko & Gere (2009), and Thompson & Hunt (1973).

The equilibrium configuration where the structure loses stability is
characterized by some type of critical point. In analyzes with geometric
nonlinearity, the types of critical point that may arise in the equilibrium path are
load limit points and bifurcation points. Displacement limit points should also
receive some attention, although they are not associated with stability conditions.

Figure 3.1 shows some examples of limit point occurrences.
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initial ] } Displacement
configuration stable unstable stable

Figure 3.1 — Types of limit points

Load limit points are those at which a system's capacity for resistance to
additional load is exhausted and continued deformation results in a decrease in load-
resisting capacity (McGuire et al., 2000). Graphically this means a local maximum
or minimum of the curve, where the tangent at the point is horizontal (parallel to
the axis of displacement). Numerically, these points are characterized by the
singularity of the tangent stiffness matrix. Although a zero-stiffness limit point is
rarely encountered in the incremental methods commonly employed, the approach
to it indicates that the numerical accuracy of the solution may diminish in the
neighborhood of a limit point because of ill-conditioning. Special solution
techniques are required to detect and pass through a load limit point for continuing
the analysis into the post-critic region.

The physical phenomenon associated with load limit points is called snap-
through. This phenomenon occurs when the structure undergoes a load increase
until, upon reaching the limit point, a dynamic jump occurs to seek another
equilibrium position, in a process that releases the internal energy of deformation
as kinetic energy. The response between the maximum and minimum load limit
points has a negative stiffness and thus is an unstable region. This behavior is
usually presented by shallow structures, such as arches and membranes, where

concavity inversion occurs.
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Displacement limit points, also known as turning points or snap-back points,
are not considered as a critical point but have implications for the numerical
solution of the path trace. Equilibrium stability after displacement limit points is
not necessarily changed. These points do not have much physical meaning. They
are graphically identified by vertical tangents of the curve (parallel to the load axis).

Critical points of bifurcation occur at the intersection between two or more
equilibrium paths, belonging to different paths. The path followed by the structure
is the one with the lowest energy required. The physical phenomenon associated
with this type of critical point is called buckling, and commonly occurs in slender
structures under compression loads. However, the occurrence of ideal bifurcation
points is rare in real structural systems, as the inevitable imperfections of geometry,
load application, and materials make the crossing of paths impossible to occur, and
only one of them is followed. The detection of bifurcation points is not treated in
this work, but it is well explored in Crisfield (1997) and Teh & Clarke (1999).

3.3.Incremental System of Equilibrium Equations

To trace the equilibrium path, the nonlinear system of equations must be
solved several times, in an incremental fashion. The nonlinear solution is
approximated by linear responses at each increment. The linear approximation
generates a residue between the linearized solution and the real nonlinear solution.
This residue may, or may not, be corrected by iterative techniques, depending on
the solution method selected for the analysis. The following sections aim to present
the methodology of incremental solution of the nonlinear system of equilibrium
equations. The methods implemented in the developed tool are detailed.

Throughout this chapter, the configuration corresponding to the incremental
step i-1 is the last obtained equilibrium configuration, while the one corresponding
to step i is the current configuration, still unknown, in which equilibrium is being
sought. The symbol A is used to indicate the increments of the variables in each
step, while the symbol & is used here as the indication of the increments in each
iteration. Furthermore, vector and matrix variables are written in bold, and scalar
product is represented by a dot. All vectors and matrices correspond to the global

structure arrays, assembled with the local arrays of each element.
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3.3.1. Incremental Solution

Common to any kinematic description used to formulate the nonlinear
structural problem is that the system of nonlinear equations, which defines the
global equilibrium state, considering a finite element discretization, is given by the
balance of internal and external forces at nodal points. This balance is expressed as
in Eq. (3.1), where F is the vector of internal nodal forces, which is a function of
the nodal displacements vector, U, and P is the vector of external nodal forces
applied to the structure, which is a function of a load factor, A. Equation (3.2) shows
how the vector of external nodal forces is expressed as the product of a load factor

by a vector of reference loads, P . In this work, the reference loads are taken as the
total external forces, proportionally applied to the nodal degrees-of-freedom, i.e.,
all components of the vector of external forces are increased or decreased by the
same ratio. Therefore, the load factor is interpreted as a ratio of the externally

applied forces, being referred to as load ratio.
FU)=P() (3.1)
P=AP (3.2)
Both force vectors in Eq. (3.1) are developed using the Principle of Virtual
Displacements, a kinematic description, and the FEM to discretize each element
displacement and rotation fields.
The solution of the equilibrium system in Eq. (3.1) is obtained incrementally.
For a sequence of external load increments, given by increments of the load ratio,
AN, the corresponding increments of nodal displacements, AU, are calculated by
linearizing the problem, where subscript i indicates the i-th analysis step. The total
external forces and nodal displacements of the current (desired) configuration
(step 1) are then computed by adding the incremental updates to the previous
(known) configuration (step i-1):
P =(A,+AN)P (3.3)
U, =U,, +AU, (3.4)
Therefore, starting from a known equilibrium configuration, the next
equilibrium state is sought by the balance of internal and external forces, which are

incrementally increased:
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F(U)=P (3.5)
F(UL+AU,)=(r_+A))P (3.6)
F(AU)=AMP+1,P-F(U,,) 3.7)

Notice that, as a result of linearization, it was possible to write F(Ui.1 + AU;)
= F(Ui1) + F(AUi). Moreover, as the structure was in equilibrium in the previous
configuration (Pi.1 — F(Ui.1) = 0), the incremental system of equilibrium equations
IS:

F(AU,)=ALP (3.8)

The tangent stiffness matrix, K, is defined in Eq. (3.9), as the derivatives of
internal forces with respect to nodal displacements evaluated at the previous known
configuration. Thus, the internal forces can be written as in Eq. (3.10), and the

incremental system to solve for displacement increments is given in Eq. (3.11).

oF
K="+ 3.9
Ul 9
F (AU;)=K_AU, (3.10)
K,AU, = AL P (3.11)

The tangent matrix of a beam element was developed in Chapter 2 using the
Principle of Virtual Displacements, a kinematic description (Updated Lagrangian
or Corotational), and the Finite Element Method to discretize each element
displacement field. The global system matrix is then assembled by a Direct Stiffness
procedure. If the formulation is consistent, this matrix represents the derivatives of
the internal forces with respect to nodal displacements (tangent of the solution).
However, since the internal forces are a nonlinear function of the displacements,
the solution of the linearized incremental system of Eq. (3.11) does not satisfy the
equilibrium. A vector of residual forces arises as a result of the unbalance between
external and internal forces. An iterative process is often employed within each
increment to ensure the equilibrium by eliminating the residual forces.

It should be mentioned that the evaluation of the tangent stiffness matrix and
the vector of internal forces, at any configuration, is done in distinct ways
depending on the formulation of the problem. Details on this process, for the UL
and CR formulations implemented in this work, are left for Chapter 4.
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3.3.2. Incremental-Iterative System

Considering that the structure was in equilibrium at step i-1, it is desired to
achieve equilibrium in the i-th step. Therefore, it is necessary to nullify the residual
forces originated from the linearized increment. This is done by performing
corrective iterations of the Newton-Raphson type within each incremental step until
a convergence criterion is satisfied, and a new equilibrium state is established.

In each iteration, indicated by subscript j = 1,2,3..., increments of load ratio,
S\, and nodal displacements, U{, are obtained. These iterative increments
represent a correction of the load and displacement values in the respective step.
Therefore, after the the j-th iteration, the total increments of the i-th step are updated

by accumulating the iterative increments:
AN = AT+ ) (3.12)
AUJ =AU+ 85U/ (3.13)
The total values of the load ratio and nodal displacements for the entire
analysis are updated as follows:
A=k + AN (3.14)
Ul=U,_,+AU/ (3.15)
Equation (3.16) brings the residual force vector after the j-th iteration, given

by the difference between the total values of external and internal nodal forces.
RI=AMP-F (Uij) (3.16)
Assuming that, in the iterative solution, we have evaluated Ui and the
iterative increments are sufficiently small, the residual forces can be obtained by a

Taylor series expansion up to the first derivatives about the conditions at step i,

iteration j-1:

R
oU

SUJ + Z—R S)J + higher order terms (3.17)

Ut

RI=RI™+

U

Notice that, considering the externally applied forces to be independent of
displacements, the derivatives of the residual forces with respect to nodal
displacements result in the tangent stiffness matrix (with negative sign). Similarly,
the derivatives of the residual forces with respect to the load ratio result in the

reference load vector:
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Rl E&_ﬁ __OF g (3.18)
Uy o\ au )| . auly.
R @_R'; _P _p (3.19)
arly o o)), oy

Using Eq. (3.18) and Eq. (3.19) in Eq. (3.17), considering the residual forces
in the current iteration to be null (RJ = 0), as it is desired, and neglecting higher
order terms, it is possible to obtain the governing incremental-iterative system of
finite element equations to be solved in the j-th iteration of the i-th step, to achieve
equilibrium by means of the Newton-Raphson iteration scheme. The resulting
system to compute the iterative increments of displacements is given in Eq. (3.20),
whereas the improved, or corrected, displacements solution is given in Eq. (3.21).
These equations were obtained by linearizing the response of the finite element
system about the conditions at step i, iteration j-1, by means of a Taylor series
expansion. The residual forces are calculated according to Eq. (3.16).

KJ7sU]) =8P + R (3.20)

ul=u/"+sU/ (3.21)
The initial conditions to start the iterative process of the i-th incremental step

are the results obtained at the end of the previous step:

A=k (3.22)

i
u’'=u,, (3.23)

The Newton-Raphson iteration scheme is the most frequently used for the
solution of nonlinear finite element equations because of its convergence properties,
as presented by Bertsekas (1982). An important property of this scheme is that if
the current iterative solution is sufficiently close to the real solution, if the exact
tangent stiffness matrix is used in the iterations (evaluated consistently with Eq.
(3.9)), and if the tangent matrix does not change abruptly, we can expect a quadratic
convergence (Bathe, 1996). This means that if the error after iteration j is of order
e, then the error after iteration j+1 will be of order e2. On the other hand, if these
conditions are not satisfied, then the iteration may diverge. The primary procedure
for reaching convergence, if convergence difficulties are encountered, is to decrease

the magnitude of the load step.
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In the standard Newton-Raphson iteration scheme, the tangent stiffness
matrix is updated in all iterations, considering the last obtained geometric
configuration, Ui, and internal forces, F(Ui"Y). However, in general, the major
computational cost per iteration lies in the calculation and factorization of the
tangent stiffness matrix. Since these calculations can be quite expensive when
large-order systems are considered, the use of a modification of the Newton-
Raphson algorithm can be effective. In the modified Newton-Raphson iteration
scheme, the tangent matrix is only evaluated at the beginning of each incremental
step and held constant for all subsequent iterations, i.e., Ki"* = K; for j > 1.

The modified scheme has a lower computational cost at each iteration than
the standard version, but convergence is usually slower because it typically requires
more iterations in each incremental step. However, the additional effort of the extra
iterations performed by the modified scheme is often offset by the substantial
savings realized as a result of not having to assemble and decompose a new tangent
stiffness matrix in all iterations. The use of the modified scheme to update the
tangent matrix may result in convergence problems in the analysis of structures that
exhibit significant stiffening behavior as a result of large internal tensile forces
(McGuire et al., 2000).

The overall behavior of the two types of Newton-Raphson iteration schemes
is illustrated in Fig. 3.2 for a single degree-of-freedom, where point A is the start of

the incremental step and point B is the converged equilibrium solution.

Y
Load Standard Load Modified
Newton-Raphson Newton-Raphson
\ B & \ B
AP AP
—|—2, A
| Displacement ""——" Displacement
AU AU

Figure 3.2 — Versions of the Newton-Raphson iteration scheme (adapted from Leon et al., 2011)
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3.3.3. Augmented Incremental-Iterative System

The linearized system of Eq. (3.20) has N+1 unknowns: N components of
displacement increment in 3U{ and one load ratio increment SAd; but only N
equations. It is necessary to add a constraint equation to that system. The general
form of this additional equation is given in Eq. (3.24), where vector A and scalars
B and C are constants that can assume different values depending on the solution

method to which this equation is associated (Yang & Kuo, 1994).

Al-8U] +BlsA) =C] (3.24)
The governing system of Eq. (3.20) and the constraint equation of Eq. (3.24)
yield an augmented system of N+1 equations and unknowns:

Gl R (325)
(AJ) BiJ 8}\’; Ci]

The augmented system matrix is no longer symmetric and has an increased
bandwidth due to the added load ratio. The solution of this system would be
computationally undesirable with respect to both storage and efficiency. However,
Batoz & Dhatt (1979) presented a technique to overcome this problem by
decomposing the system into two systems that use the original matrix, so the banded

and symmetric properties of the original system remain intact:

S = p
{Ki our=p (3.26)

K/ %50 = RI?
The solution for the iterative increment of displacements is the linear

combination of a tangent, 53U,/ , and a residual, U , increment:

SUJ =83is0) +50) (3.27)
The unknown iterative increment of load ratio is given by the constraint
equation, which is associated with a particular nonlinear solution method that gives
rise to the constraint coefficients A, B, and C of Eq. (3.24). Replacing Eq. (3.27)
into Eq. (3.24), one can notice, in Eq. (3.28), that the constraint equation is also a
function of the tangent and residual components of the iterative increment of
displacements. Therefore, the linear systems of Eq. (3.26) must be solved prior to

computing the iterative increment of load ratio.
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s = S A BU) (3.28)
' B +A-8U/

It is also important to mention that the addition of the constraint equation to
the system permits an adjustment of both the displacements and the load ratio
during the iterative cycle and, therefore, allows the algorithms to advance in the
solution beyond load limit and displacement limit points.

The incremental-iterative solution process is summarized with Equations
(3.26), (3.28), and (3.27) to calculate the iterative increments of load ratio and nodal
displacements. Equations (3.12) to (3.15) are used to update the iterative results
with Equations (3.22) and (3.23) as initial conditions for the incremental step.
Finally, the residual forces are calculated using Eq. (3.16). Table 3.1 organizes these

important equations.

Table 3.1 — Summary of equations for solving the incremental-iterative system

KJ*8U]! =P

Tangent and residual increments
K80 =RJ?

8%{=(QL—AL863»«&L+ALSU§)

Iterative increments -
ESUij = SM'SUJ + SUij

AN =AW+ 8]

Step increments
AU/} =AU +8U)

Xij =N\, + Akij
Total values
Ui=U,_, +AU]
Residual forces R =AJP-F(U/)

The incremental single-step solution process, in turn, works only with the

purely incremental system of Eq. (3.11), as explained in Section 3.5.1.
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The process of solving the purely incremental or the incremental-iterative
system can be split into two phases within each step, called predictor phase and
corrector phase. For the methods with iterative solutions, the predictor phase is
equivalent to the first iteration, and the remaining iterations correspond to the
corrector phase. This is an alternative way of presenting and implementing the
solution process, rather than performing all iteration in the same loop. The
advantage is to make explicit the role of each phase and to combine different
increment strategies with correction strategies. For purely incremental methods, this
division makes no difference.

Details of the strategies that can be adopted in each solution phase, for both
incremental single-step and incremental-iterative methods, are described in the
following sections. In Section 3.6, a summary is presented with a flow-chart of all
the general steps to solve the nonlinear problem by the mentioned classes of
incremental methods. The reader is encouraged to take a look at Fig. 3.15 before

proceeding.
3.4.Predicted Solution

In each incremental step, the predictor phase is executed first. The purpose is
to calculate a predicted solution with a single linear analysis that uses the tangent
stiffness matrix evaluated at the beginning of the step.

This phase, for the i-th incremental step, starts with the evaluation of the
tangent stiffness matrix, Ki°, based on the results obtained at the end of the previous

step (nodal displacements, Ui.1, and internal forces, F(Ui.1)). The tangent increment

of displacements, 38U/, is then calculated with a linear analysis, according to the
first line of Eq. (3.26). The residual increment of displacements in this phase is null
(Sﬁij =0), because residual forces coming from the previous step are disregarded.

The predicted increment of displacements, 3U;i?, is obtained according to Eq. (3.27),
but only with the product of the tangent increment of displacements by an increment
of load ratio (8U/ =61)8U). This load ratio increment is computed with a
constraint equation that defines a hyper-surface to restrict the corrective solutions

of the incremental-iterative methods. Figure 3.3 illustrates a schematic of the
predictor phase for a single degree-of-freedom system.
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Figure 3.3 — Schematic of the predictor phase

Obtaining the predicted solution has as fundamental task the calculation of
the predicted increment of load ratio. In the first incremental step of the analysis
(i = 1), the predicted increment of load ratio must be a prescribed value by the
analyst. According to McGuire et al. (2000), this value should normally be about
10% to 20% of the maximum applied load. In the remaining steps (i > 1), it is
computed according to the constraint equation of the selected strategy.

The size of the predicted increment of load ratio employed in each step of the
analysis can have a dramatic effect on the solution. In the single-step methods,
proper selection of this increment is the only means for controlling drift-off error.
In the incremental-iterative methods, a poor definition of this value could result in
convergence problems. In both methods, an excessively small increment may result
in significant computational effort with a negligible increase in accuracy.

Therefore, a good algorithm must be able to automatically adjust the size of
the predicted increment, according to the degree of nonlinearity of the system. This
automatic adjustment should provide large increments when the response is almost
linear, in order to reduce the computational cost, and lead to small increments when
the response is strongly nonlinear, so drift-off error is reduced or the iterative cycle

can converge to a new equilibrium configuration.
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The option of whether or not to use the automatic adjustment of the load ratio
increment is usually available on computer programs, as in the case of the
developed tool. However, it is recommended that the option to automatically adjust
the increment be selected. Thus, the increments of all steps do not depend only on
the value provided for the first step, which can be a bad value if the user does not
know what to expect from the behavior of the structure.

In addition, when the solution passes a load limit point and reaches an
unstable equilibrium configuration, the load increment necessary to continuing
tracing the equilibrium path must be a negative value, for a positive increment of
displacement. Hence, the algorithm must also be able to choose the correct sign for
the increment, allowing continuation methods to go beyond load limit points.

The strategies for calculating the value of the predicted increment of load ratio

and choosing the correct sign of this increment are presented in the next sections.
3.4.1. Increment Strategies

Two classes of strategy to compute the predicted increment are usually found
in the literature of nonlinear analysis of structures. Each one has a different way of
adjusting the size of the increment to account for the system nonlinearity. One is
based on the number of performed iterations and the other is based on the stiffness

of the system. Both of them are presented next.
3.4.1.1. Strategies Based on the Number of Iterations

The idea of these strategies starts by setting the increment of a control
parameter, ¢, as the same value of the increment of this parameter in the previous
step, according to Eqg. (3.29). The selection of the control parameter is what
distinguishes the strategies. The most common parameters are the load ratio, the

external work, and an arc-length.

3¢t =8t (3.29)
The corresponding increment of load ratio, necessary to provide the
prescribed increment of the control parameter, is then computed. Thus, when the
control parameter is not the load ratio itself, a coefficient, H, is necessary to convert
the increment of the control parameter to the increment of load ratio. The constraint

equation becomes:
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5ht = [H|[37] (3.30)

The load ratio increment is adjusted by selecting the correct sign and
multiplying it by an adjustment factor that measures the degree of nonlinearity of
the system based on the number of performed iterations. The general form of the
expression for obtaining the predicted increment of load ratio in the i-th step, for
i > 1, is given in Eq. (3.31), where J is the adjustment factor of the increment size

and the correct sign is selected according to the criterion presented in Section 3.4.2.

8as =23, H]|5nL (3.31)

The adjustment factor of these strategies, as introduced by Ramm (1981), is
given in Eq. (3.32). In that expression, Ni and Ni.1 are, respectively, the desired
number of iterations for the current step, which is a user input data, and the number
of iterations required to achieve convergence in the previous step. The exponential
variable # typically ranges from 0.5 to 1.0, but the lower value is usually employed,
as suggested by Ramm (1982) and Krenk (2009).

- (l)” (3.32)

In the next sections, the formulation of each increment strategy is developed,
to arrive at the expressions for the converting factor H of the corresponding control
parameter, and determine the predicted increment of the load ratio.

Some remarks should be made:

e Since these strategies depend on the number of iterations to measure
the degree of nonlinearity of the systems, they are only applicable to
incremental-iterative solution methods.

e The constraint equation, defined by the increment of the control
parameter, is used in the iterative corrections of some incremental-
iterative methods to keep this increment constant during the entire
step. Therefore, in this case, the increment of the control parameter to
reach the predicted solution is the same increment of the end of the
step, and Eq. (3.29) could be expressed as a function of the total

increment of the previous step:

80! =Ap, (3.33)
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However, in some iterative strategies, the predicted increment of the
control parameter is not kept constant throughout the step. The Linear
Arc-Length, Minimum Norm, and Orthogonal Residue control
methods are some examples. In these cases, the value of the increment
of the control parameter at the end of the iterative cycle is different
from the predicted value. Therefore, the constraint equation developed
in terms of the total increments of the previous step, according to Eq.
(3.33), should be applied for the prediction of the load ratio increment
in the iterative strategies that do not preserve the increment of the
control parameter.

Furthermore, the constraint equation in terms of the total incremental
values of the previous step is easier to implement, since these are
information that are naturally stored to update the results. In contrast,
the information about the predicted solution of the previous step
would have to be stored just for computing the constraint equation by
means of Eq. (3.29). Both expressions for the constraint equation,
developed according to Eq. (3.29) and Eqg. (3.33), are presented in the
next sections.

As previously commented, in the first step of the analysis the
predicted increment of load ratio is a prescribed value by the analyst.
The reason for requiring the increment of the load ratio, and not the
increment of the control parameter of the selected strategy, is that a
user has a much better sense of the load increment to be taken than of
a more abstract parameter such as an external work or an arc-length.
In the implemented algorithm, a check is made to verify if the
predicted increment results in a total load ratio greater than the
prescribed maximum value for the analysis. In this case, the load ratio
increment is limited to the difference between the maximum value and

the total load ratio from the previous step (SAi! = Amax - Ai-1).
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34.1.1.1. Load Increment

In this strategy, the predicted increment of load ratio is directly obtained from
the previous step, so the constraint equation of Eq. (3.30) is used with unit value
assigned to the coefficient H. Notice that this constraint equation corresponds to
assuming the values given in Eq. (3.35) to the constraint coefficients of Eq. (3.28).

S\ =[50 | (3.34)
A=0 , B'=1 , C'=[sn (3.35)

By applying the correct sign and the size adjustment factor:
1} =+J oA} | (3.36)

This increment strategy is appropriate to be used by the Load Control Method
(Section 3.5.2.1), with the purpose to keep the predicted increment of load ratio
constant after each iteration. Alternatively, the total increment of load ratio of the

previous step could be employed:

A =+ |Ah, | (3.37)

34.1.1.2. External Work Increment

The control parameter to be incremented in this strategy is the external work,

W, applied to the system. Equation (3.29) becomes:

BW' = W', (3.38)
The work increment to obtain the predicted solution can be expressed by the

product of the increment of external forces by the increment of displacements:

SW! =3\P - 8U! (3.39)
Equation (3.27) is substituted into 5Ui*, with residual increments being zero,

which results in:
W =(81t)" P50} (3.40)
The increment of external work of the previous step is similarly defined as:

W, =(801,) P80, (3.41)
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Therefore, the constraint equation to find the increment of load ratio
corresponding to the increment of external work can be obtained as follows:

(81) P80 =(snt, ) P80, (3.42)
P.8U"
S =+[5M} | ‘5-5031 (3.43)

The constraint coefficients employed in Eg. (3.28) to arrive at the same

constraint equation are:

Al=8MP , B'=0 , C'=5W} (3.44)

The adjusted increment of load ratio is obtained by imposing the adjustment
factor J to Eq. (3.43):

SN =+J|5)) | (3.45)
where the coefficient H can be identified as:
D 71
H =Y (3.46)

~ P-sU!

When the first step (i = 1) is taken as the reference for adjusting the increment
of external work, this coefficient is known as the Current Stiffness Parameter
(CSP), and this work-based strategy is interpreted as a stiffness-based strategy,
described in Section 3.4.1.2.1.

The External Work Increment strategy should be used together with the Work
Control Method of iterative corrections (Section 3.5.2.2) to maintain the same work
increment during the entire step. In this case, the total increment of external work
of the previous step could also be used to develop the constraint equation, according
to Eq. (3.33). The result is:

ST =J_rJ\/

Some weaknesses of the External Work Increment strategy have been

A\ ,P-AU,,

S (3.47)
P-8U;

examined by Yang & Shieh (1990). For structures with a small number of degrees-
of-freedom, and which the major forcing directions present a snap-back behavior,
the denominator of Eq. (3.46) tends to zero, forcing the increment to infinity. For

this reason, this strategy has limited success when facing displacement limit points.
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3.4.1.1.3. Arc-Length Increment

This strategy considers an arc-length, L, as the control parameter to be

incremented:

S =51, (3.48)

The arc-length is calculated via a norm of the predicted increment:

8L = (sui1 8UL+B(81L) P 5)% (3.49)

where 3 is a non-negative real parameter that defines different versions of the
arc-length measurement: cylindrical arc-length (B = 0), spherical arc-length (B =1),
and elliptical arc-length (0 < < 1). Only the cylindrical and spherical versions
were implemented.

Using Eq. (3.27), with residual increments being zero, the arc-length

increment is expressed as function of the tangent increment of displacements:
1 1\2 <71 st W5 52 (3.50)

o3 =((8%)"0; -50; +p(321)" P -P) -
5L = 87 (38U} -3U; +BP - 5)% (3.51)
The arc-length increment of the previous step is expressed in the same way:

8L, =81, (80}, -0}, +pP-P )% (3.52)

Therefore, the constraint equation is obtained as follows:

8 (807 -8U; +BP- 5)% =8, (80}, -80}, +PpP- 5)% (3.53)
—

o\ = [ont| 6UL—; 69;-1”?’_P P (3.54)
sUL-8U+pP-P

where the coefficient H can be identified as:

e o =
_8U;,-8U;, +pP-P (3.55)
SU'-8U! +BP-P

This constraint equation is equivalent to assuming the following values for

the constraint coefficients of Eq. (3.28):

T 2
A =818U! B =B8A c}:(gq{) (3.56)
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With the introduction of the adjustment factor and the appropriate sign, the
results for the cylindrical and spherical versions of the arc-length increment are

respectively:

S\ =+ || (3.57)

= = ——
8U|_—l 'Slii—l +_P _P (358)
8U;-8U; +P-P

SAL=+J \sxill\\/

Alternatively, the constraint equation can be developed in terms of the total
increments of the previous step. The results for the cylindrical and spherical

versions are respectively:

SAL = +J (3.59)

5= 13 JAUH'A_U@(A’EJ_Z P-P (3.60)
' SU!-8U!+P-P

The increment strategies based on an arc-length should be used by the
iteration strategies that restrict the corrected solutions to the corresponding
constraint hyper-surface. That is, the Cylindrical Arc-Length Control Method and
the Spherical Arc-Length Control Method (Section 3.5.2.3), both for iterative
corrections, use the Cylindrical Arc-Length Increment and the Spherical Arc-
Length Increment strategies, respectively. The reason is to avoid numerical issues
due to the possible inconsistency between increment sizes (Santana, 2015).

Some iteration strategies, however, are not bound to any increment strategy,
which is the case of the Linear Arc-Length Control Methods (Section 3.5.2.4), the
Minimum Norm Control Method (Section 3.5.2.5), and the Orthogonal Residue
Control Method (Section 3.5.2.6). For these iteration strategies, it was opted to use
the Cylindrical Arc-Length Increment in the predictor phase, due to its better
numerical efficiency. The expression of Eq. (3.59), based on the total arc-length
increment of the previous step, is used for these iteration techniques. The reason, as
previously mentioned, is that the arc-length increment changes after each iteration,
and the total increment at the end of the previous step is preferably taken as the
reference to predict the increment of the current step.
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A shortcoming of the strategies that work with arc-length increments is that
they are not consistent in physical units. The expressions involve the scalar product
of displacement vectors that contain both translations and rotations, which are
different both in units and in orders of magnitudes (Yang & McGuire, 1985).
Numerical difficulties of certain sort are likely to occur due to such inconsistencies.

This problem is not a concern when dealing with work increments, for example.
3.4.1.2. Strategies Based on the Change of Stiffness

The strategies of this class rely on the stiffness of the system, rather than the
number of iterations, to measure its degree of nonlinearity and adjust the size of the
predicted increment of load ratio. The adjustment factor of the increment size is a
stiffness parameter that relates the stiffness of the system at the beginning of the
analysis to the stiffness in the current step. The predicted increment of load ratio in
the first step is used as the reference to compute the new adjusted increment. The
correct sign must also be imposed.

Equation (3.61) brings the general expression for this type of strategy to
obtain the predicted increment of load ratio, for i > 1. S is the adjustment factor
given by a stiffness parameter, and # can vary from 0.5 to 1.0, but typically assumes
the value of 0.5.

St =£|S[" 81 (3.61)

Different stiffness parameters can be employed as the adjustment factor. Two
of them are presented in the following sections.

3.4.1.2.1. Current Stiffness Parameter

The Current Stiffness Parameter (CSP) was presented by Bergan et al. (1978).
It was proved in Section 3.4.1.1.2 that this parameter corresponds to the conversion
coefficient H of the External Work Increment strategy when the first step of the
analysis is taken as the reference for adjusting the predicted increment of external

work:

D 71
csp— P84, (3.62)

P-8U;
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The CSP is a non-dimensional scalar quantity that was introduced to provide
a better way to characterize the overall behavior of multiple degree-of-freedom
nonlinear systems. This parameter indicates whether the system is being loaded or
unloaded. It has the initial value of unity for any nonlinear system. It is less than
unity when the system becomes “softer” than the beginning of the analysis and
greater than unity for stiffening systems.

The behavior of this parameter is depicted in Fig. 3.4, for a typical instability
problem with snap-through behavior. The horizontal axis of both diagrams is some
norm of the displacements vector, intended to characterize the behavior of all
degrees-of-freedom with a single scalar value. It can be seen that the unstable
behavior of the problem is characterized by a value of the CSP less than zero.
Therefore, it is possible to identify load limit points of instability when the stiffness

parameter becomes negative.

[ Stiff
I Soft
o 7 11|
-
/ Unstabl
Instability nstable

point
Figure 3.4 — Behavior of the Current Stiffness Parameter (adapted from Bergan et al., 1978)

A drawback of using this parameter is when the structure presents snap-back
behavior. As explained in Section 3.4.1.1.2, the quantity in the denominator can
approach zero in the vicinity of displacement limit points, leading the CSP to
infinity. A more stable stiffness parameter is the Generalized Displacement

Parameter, presented next.


DBD
PUC-Rio - Certificação Digital Nº 1712771/CA


PUC-Rio- CertificagaoDigital N° 1712771/CA

101

3.4.1.2.2. Generalized Stiffness Parameter

The stiffness parameter considered in this work is the Generalized Stiffness
Parameter (GSP), introduced by Yang & Kuo (1994). This parameter is used in a
method that is based on the increment of a generalized displacement, D, which can

be expressed by:

8DJ =&nsU!, -8U] (3.63)
The predicted increment of generalized displacement for the current step is

compared to the increment of the first step of the analysis. Using Eq. (3.27) to
express the generalized displacement in terms of the tangent increment of

displacements, and considering U, =38U., the constraint equation is derived as

follows:
8D =3D; (3.64)
(811) 802, -80% =(8nt) 802 50 (3.65)
(3.66)
Tl 71
Gsp = 290U, (3.67)

Alternatively, the constraint equation could be obtained with the following
constraint parameters, suggested by Yang & Shieh (1990) to improve the numerical

stability of the solution method:

Al=8\80, , B'=0 , C!'=3dD} (3.68)

Just like the use of the CSP, when this strategy is adopted the stiffness of the
structure is measured with respect to the first incremental step, so stiffening and
softening behavior are readily identified. The GSP will always have an initial value
of unity, and stiffening or softening of the structural system are also indicated by

values greater or less than one, respectively.
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However, a negative value is only assumed in the steps immediately after load
limit points. As it can be verified in Eq. (3.67), the numerator is a constant positive
value, and the denominator, given by the scalar product of the tangent increment of
displacements of the current and previous steps, controls the sign of the expression.
The sign of this product indicates whether the increments of the previous and
current steps are in the same “direction”, as illustrated in Fig. 3.5 for a single degree-
of-freedom system. These directions are different when there is a load limit point

between the steps.
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Figure 3.5 — Behavior of the GSP sign (Yang & Kuo, 1994)

This strategy is used in the predictor phase of the Generalized Displacement
Control Method (Section 3.5.2.7), which performs corrective iterations based on a
constant value of generalized displacement increment.

Moreover, in the developed tool, this strategy is also used to adjust the
increment size of incremental single-step methods, since the stiffness parameter
does not depend on the number of iteration to evaluate the degree of nonlinearity of

the solution.
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3.4.2. Determination of the Increment Sign

The appropriate sign of the predicted increment can be selected according to
several criteria. The most common are based on the properties of the tangent
stiffness matrix and the behavior of some stiffness parameter, such as the CSP and
the GSP.

Crisfield (1991) suggested that the sign of the load increment should be
positive whenever the tangent stiffness matrix of the beginning of the step is
positive definite. In his studies, it was shown that the sign of the increment must be
inverted when a negative pivot is detected in the factored stiffness matrix using the
Crout decomposition algorithm. Equivalently, the sign of the increment must be the
same of the previous increment unless the sign of the determinant of the tangent
stiffness matrix changes. However, as reported by Meek & Tan (1984), this
procedure is not recommended for systems that exhibit multiple negative
eigenvalues.

Alternatively, the CSP, presented in Section 3.4.1.2.1, indicates whether the
system is being loaded or unloaded. The sign of this parameter should be applied to
the load ratio increment: if the parameter is positive, the system is being loaded and
the load ratio should increase; if it is negative, the load is decreasing and the load
ratio increment should be negative. However, it was mentioned that the CSP might
present some numerical instabilities near displacement limit points.

In this work, the criterion to select the appropriate sign for the increment is
based on the sign of the GSP, whose behavior was explained in Section 3.4.1.2.2.
This parameter is negative only immediately after load limit points. Therefore, the
predicted increment sign must be inverted every time the GSP assumes a negative
value. The increment sign, represented by s in Eq. (3.69), is monitored throughout

the analysis:

{ i=1 —> s=@ (3.69)

GSP<0 — s=-s
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3.5.Corrected Solution

The corrector phase tries to correct the predicted solution. In the case of
higher order incremental single-step methods, another linear analysis is performed
with an average stiffness matrix that better represents the stiffness of the step, in
order to reduce the residual forces generated by the predicted solution. In the case
of incremental-iterative solution methods, the residual forces are vanished through

a cycle of iterative corrections of load ratio and nodal displacements.
3.5.1. Single-Step Correction

The incremental single-step solution methods all employ a strategy that is
analogous to solving systems of differential equations by the Runge-Kutta methods
(Butcher, 1996). This class of method performs a linear analysis with an average
stiffness matrix that better represents the stiffness of the step, in order to reduce the
residual forces generated by the predicted solution, but not necessarily make it
numerically null.

The total increment of displacements of the i-th step is found by solving the

purely incremental system of Eq. (3.11), but with an average stiffness matrix, K,

that represents the stiffness of the entire increment:

K,AU, = AP (3.70)

The update process of external forces and nodal displacements follows Eqg.
(3.3) and Eq. (3.4), respectively, where the total increment of load ratio for the
current step is the predicted value (Aki = 8Ait). As mentioned earlier in this work,
the adopted strategy to adjust the predicted increment value of load ratio in single-
step methods is the GSP-based strategy of Section 3.4.1.2.2.

The fundamental task of higher order single-step methods is obtaining the
average stiffness matrix for the current step. Taken as a weighted average, this
matrix is written as in Eqg. (3.71), where o™ is the weighting coefficient
corresponding to one of the n sampling points within the increment in which the
tangent stiffness matrices, Ki", are evaluated. Each tangent matrix is evaluated with
the total displacements, Ui, and the corresponding internal forces, F(Ui"), at the

sampling points.
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R, = > o"KI (371)

m=1

By varying the weighting coefficients and the number and location of the
sampling points, various types of incremental single-step methods can be devised
from Eq. (3.71). The number of sampling points employed in each step defines the
order of the method. In general, the accuracy of the nonlinear response will improve
with an increase in this order.

Figure 3.6 shows a schematic of a second-order single-step method, which
uses two sampling points, m1 and m2, to take an incremental step in a single degree-
of-freedom system. This figure also shows how a linear analysis performed with

the average stiffness matrix tends to reduce the residual forces generated by the
predicted solution, Ri, to a new corrected value, R,. The step positions of the

sampling points are represented by the coefficient p, which are fractions of the

predicted increment.
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Figure 3.6 — Schematic of an increment with a second-order single-step method

Major advantages of incremental single-step methods are their
implementation simplicity and efficiency. The number of linear analyses performed
in each increment is the same as the order of the method. For the implemented
methods, only one or two analysis are required per step. In this regard, they are
particularly attractive for the analysis of structures exhibiting smooth nonlinearity.
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A drawback of these methods is that the residual forces are not vanished after
the single-step correction, because of the use of a single representative stiffness in
each increment. Therefore, a drift-off error is generated in each incremental step
and accumulated along the analysis. If the increments are not sufficiently small, this
error can lead to very inaccurate responses, as illustrated in Fig. 3.7. Although the
drift-off error can be reduced by using smaller increments, the additional number
of steps required for analyzing highly nonlinear systems may become unreasonable.
In this case, the use of an iterative scheme is more appropriate.
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Figure 3.7 — Drift-off error resulting from residue accumulation in single-step methods

Three incremental single-step methods were implemented in the developed
tool: Euler, Heun, and Midpoint methods. Their properties are discussed next.

3.5.1.1. First-Order Method

The Euler method, or simple step method, is the most elementary. It consists
of a first-order Runge-Kutta method that uses an average stiffness matrix calculated
with the deformed geometry and corresponding internal forces that exist at the start
of the increment. In other words, the Euler method uses only the predicted solution,
with no corrections. Therefore, no other procedure, other than updating geometry
and external forces, is necessary to advance to the next step after obtaining the

predicted solution.


DBD
PUC-Rio - Certificação Digital Nº 1712771/CA


PUC-Rio- CertificagaoDigital N° 1712771/CA

107

3.5.1.2. Second-Order Methods

The fundamental source of error in the Euler method is the assumption that
the stiffness at the beginning of the incremental step can be used for the entire
increment. The family of second-order Runge-Kutta methods provides an
improvement to the Euler method approach. Such methods use two sampling points
to evaluate the tangent stiffness matrices. These matrices are then used to calculate
the representative stiffness of the step using Eq. (3.71). Decreasing step size causes

the error to decrease at a faster rate than the Euler method (Chapra & Canale, 2013).
3.5.1.2.1. Heun Method

The Heun method takes the average stiffness matrix as the arithmetic mean
of the tangent stiffness matrices evaluated at the start of the increment and at the
end of the predicted increment. Therefore, the values of the position coefficients
(1*, pn?) and corresponding weights (o, o?) for the first and second sampling points

for this method are:

u'=0.0 p*=1.0 (3.72)
ol=05 o2=05 '

3.5.1.2.2. Midpoint Method

The Midpoint method, also known as improved polygon method, relies fully
on using the stiffness of the middle of the predicted increment as the representative
stiffness for the entire step. This consideration is equivalent to set the following
values for the position coefficients (u*, p2) and corresponding weights (o, o?) for

the first and second sampling points:

=00 p’=05

(3.73)
ol=00 a’=1.0
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3.5.2. lterative Correction

The corrective phase of incremental-iterative methods aims to restore the
structure equilibrium by vanishing the residual forces, generated by the predicted
solution, through an iterative cycle of improved solutions. This cycle begins with
the update of the total load ratio, A, and the total nodal displacements, Uil, by
adding the predicted increments (5Ai* and 8U;i) to the results from the previous step
(A1 and Ui). With geometry updated, the corresponding internal forces, F(Uib),
are calculated, and the residual forces, Ri!, can be obtained by the difference
between external and internal nodal forces. At this point, convergence is checked.

There are a few different criteria to check the convergence of the iterative
process (Bergan & Clough, 1972). The most common are based on the residual
forces, residual displacements, or the work produced by these residual results. The
adopted convergence criterion for the developed algorithm is a force-based check,
which is done according to Eq. (3.74). It consists of analyzing the ratio between the
Euclidean norms of the residual force vector and the reference load vector, which
must be lower than a given tolerance, €. This tolerance is a value stipulated by the
analysis and is usually in the order of 10 to 10, depending on the desired
accuracy. If convergence is satisfied, the predicted solution was sufficient to
achieve a tolerable equilibrium state and the algorithm can proceed to the next step,

otherwise the first corrective iteration starts.

M <eg (3.74)
[P
The first procedure of each corrective iteration is evaluating the tangent

stiffness matrix considering the nodal displacements and internal forces of the last
obtained configuration. If the modified version of the Newton-Raphson iteration
scheme is adopted, this step is skipped, and the tangent matrix evaluated at the
beginning of the predictor phase is used. The tangent and residual increments of
displacements are calculated with the reference load vector and the last obtained
residual force vector, respectively, as in the linear systems of Eq. (3.26). Then, the
iterative increment of load ratio is calculated according to the constraint equation
of the corrective method (presented in the following sections). Finally, the iterative
increment of displacements is obtained with Eq. (3.27).
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The iterative increments of load ratio and displacements are restricted to the
hyper-surface defined by the constraint equation that characterizes the selected
solution method. If the performed iterations involve not only displacements
corrections, but also corrections of load ratio, then it is called a continuation
method, because it can continue to trace the equilibrium path beyond limit points.
In this case, the constraint surface that controls the corrected solutions crosses the
equilibrium path at one or more points.

After obtaining a corrected solution, the next procedures are the same used to
check the convergence of the predicted solution: update the total values of load ratio
and nodal displacements, calculate external, internal, and residual forces, and
finally check the convergence for the current iteration. Figure 3.8 brings a schematic
illustration of the described procedures.

P 602
| sU? Iax%az‘;;é’:

AN P AN?P| AP

A - Solution from step i-1

B > Predicted solution for step i
G=1

C, D > Corrected solutions for step i
(7=2,3)

E - Converged solution for step i

U

Figure 3.8 — Schematic of iterative corrections

As mentioned in the introduction of this work, one single solution method
may not be capable of solving any general nonlinear problem. Therefore, most of
the well-known corrective techniques were implemented. Some of these iterative
techniques are related to a particular predictive technique, and other are not bound
to any. Because of that, some computer programs ask users to provide the predictive

and corrective techniques separately. In the developed tool, in order to simplify the
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user input data, the solution method refers to the technique for the corrective
iterations and it includes the predictive technique that is more appropriate. In the
next sections, the characteristics of each corrective technique are described.

It should be mentioned that, in the developed algorithm, it was opted to limit
the correction of the load ratio value, in all techniques, to 0.5, avoiding exorbitant

results.
3.5.2.1. Load Control Method

The Load Control Method (LCM) is often referred to as the conventional
Newton-Raphson method. In this method, a fixed amount of load is employed in
each increment and kept constant after each iteration. The entire increment of load
ratio is applied in the predicted solution with the Load Increment Method (Section
3.4.1.1.1). Then, corrective iterations are performed in an attempt to satisfy
equilibrium requirements with displacement corrections only. Therefore, the

iterative increments of load ratio are null during the corrective cycle. For j > 1:

57»5 =0 (3.75)

This procedure is illustrated next:

P A - Solution from step i-1
B - Predicted solution for step i
C - Converged solution for step 7
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Figure 3.9 — Schematic of the Load Control Method
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A significant shortcoming of this method becomes apparent when attempting
to solve problems with load limit points. Once a fixed load is defined in the
predictor phase, there is no way to modify the load vector should a limit point occur
within the increment. Although performing the steps with a reduced load ratio
increment can enable one to approach the limit point slowly, the resulting near
singular nature of the stiffness matrix makes it difficult to trace the post-limit state
response of a structure.

A typical result when tracing the equilibrium path of systems with snap-
through behavior using the LCM is illustrated in Fig. 3.10. For systems with
displacement limit points only, no problems should be expected. In practice, this

method represents the behavior of structures subjected to load testing.
P

Load Limit Traced Equilibrium
Point Path

N W

Real Equilibrium
Path

U

Figure 3.10 — Typical result for snap-through behavior using the Load Control Method

Among the nine incremental-iterative solution methods implemented, only
this strategy is not a continuation method. All the others are supposed to capture the
real equilibrium path in post-limit analyses, although some limitations should be
expected for each one.

An advantage of using the LCM is that, as the corrections of load ratio is
always zero, it is not necessary to compute the tangent increment of displacements,
so only one linear system of Eq. (3.26) need to be solved, making it computationally
more efficient. Therefore, this method should be used when the analyst is sure about
the absence of load limit points before the total load is reached.
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3.5.2.2. Work Control Method

The Work Control Method (WCM), proposed by Powell & Simons (1981),
uses the predictive technique described in Section 3.4.1.1.2 to apply an increment
of external work, oW, to the system, which is kept constant in the corrective cycle.
Therefore, the constraint condition requires a zero increment of external work for

each iteration. For j > 1, this is represented by:
SW,J =0 (3.76)
SLP-8UJ =0 3.77)

Substituting Eq. (3.27) into Eq. (3.77), and considering that the increment of

load ratio is not null, the constraint equation of Eq. (3.79) is obtained.

S.IP -(sxﬁsﬁi" +80) ) =0 (3.78)
s = P8U; (3.79)
T P.s0)

This process is illustrated in Fig. 3.11, where it is observed how the external

work is conserved by adjusting both displacements and load ratio in each iteration.
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B - Predicted solution for step i
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Figure 3.11 — Schematic of the Work Control Method
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As the WCM corrects the value of the load ratio in each iteration, it is more
suitable for capturing snap-through behavior than the LCM. However, as mentioned
in Section 3.4.1.1.2, for structures with a small number of degrees-of-freedom and
which the major forcing directions present a snap-back behavior, the scalar product
in the denominator of Eq. (3.79) tends to zero near a displacement limit point (YYang
& Shieh, 1990). Thus, this method has limited success for capturing snap-back

behavior.

3.5.2.3. Constant Arc-Length Control Methods

In these methods, an increment of arc-length, AL, defined by the norm of the
displacements and load increments, is kept constant throughout the iteration
process. This means that the arc-length defined by the increments of the current
iteration must have the same value of the arc-length defined by the increments of
the previous iteration. Therefore, for j > 1 we have:

AL = AL (3.80)
The expressions of the increment of arc-length for the previous and current

iterations are respectively:

| - TR
AL =(aU/ AU+ (a2 P p|” (3.81)

AU = ((AUijl +8U))- (AU 48U )+ B(AnE 450} ) PP )% (3.82)

where B is the previously presented parameter that defines different versions
of the arc-length measurement to restrict the iterations: cylindrical arc-length ( =
0), spherical arc-length (B = 1), and elliptical arc-length (0 < B < 1). The
interpretation of these versions are depicted in Fig. 3.12 for a system of two degrees-
of-freedom. In that figure, A is the starting point of the current incremental step and
B is the equilibrium solution reached after the iterative cycle. In this work, only the
cylindrical and the spherical versions are implemented, according to Crisfield
(1981, 1991).

As commented in Section 3.4.1.1.3, the cylindrical and spherical versions of
the Constant Arc-Length Control Method (abbreviated by ALCM_CYL and
ALCM_SPH) use their corresponding predictive strategies (Cylindrical Arc-Length
Increment and Spherical Arc-Length Increment) to calculate the increment that
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defines the constraint hyper-surface for iterating. The reason is to avoid numerical
problems due to the possible inconsistency between increment sizes when using
other techniques (Santana, 2015).

Cylindrical Arc-Length Spherical Arc-Length Elliptical Arc-Length

u

Figure 3.12 — Variations of the arc-length measurements for controlling iterations (Leon et al.,
2011)

Substituting Eg. (3.81) and Eq. (3.82) into Eg. (3.80), using Eg. (3.27) to
express the increment of displacements of the current iteration in terms of the
tangent and residual components, and making the necessary algebraic
manipulations, we arrive at the following quadratic equation in terms of the

unknown iterative increment of load ratio:

a(51/) +2b(50))+c=0 (3.83)

where:

a=50,-50) +pP P
b=350] ‘(sﬁii +AUij’1)+Axij’1B5 P (3.84)

c=80/ (30 + 2AUiH)

The quadratic equation has two solutions for the increment of load ratio,
(5M)1 and (8)i)2, given by Eq. (3.85). Each solution corresponds to a point on the
constraint hyper-surface that satisfies the condition of keeping the arc-length

constant.

(1)) =-2+ (EJZ ¢ (3.85)
1,2 a
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Selecting the correct solution of the quadratic equation is important to avoid
regression on the equilibrium path. If the correct solution is selected in all iterations,
the algorithm advances in the equilibrium path. Otherwise, it goes back, as indicated
in Fig. 3.13.

(A7) AL;

(A7)

(AU, (aU),
Figure 3.13 — Solutions of the quadratic equation of Constant Arc-Length Control Methods

The correct value of the load ratio increment is the one that provides a solution
for the increment of displacements that is closer to the previous solution.
Mathematically, it means that the scalar product between the vectors of
displacement increments of the previous and current iterations assumes a greater
value when the correct solution of the quadratic equation is selected. That is,

considering the correct solution to be (8i)::

AU (AUT) > AU (AU)) (3.86)

3,

AU/ (AU + (1)) 80] +80) )
> (3.87)

AU (AU +(80]), 807 +507)

((80)),~(80)),)au; 807 >0 (3.88)

If the scalar product of the displacement vectors in Eq. (3.88) is positive, the
correct solution must be the greater value provided by Eg. (3.85). Otherwise, the
correct solution is the smaller value of that expression. Therefore, it can be

concluded that the correct solution of the quadratic equation depends on the sign of
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the scalar product between the two vectors of Eg. (3.88), and the constraint equation
for obtaining the iterative increment of load ratio is:

2
A :—9+sign(AUij‘1-SUij) (Ej ¢ (3.89)
a a) a

This expression, for both the cylindrical and spherical versions, may result in
a complex value if the incremental steps are not sufficiently small (Krenk, 1995),
or near multiple equilibrium paths (Meek & Tan, 1984). When it happens, the

program developed in this work interrupts the analysis and returns a warning.
3.5.2.4. Linear Arc-Length Control Methods

These types of arc-length control method, also known as orthogonal arc-
length methods, consist of restricting the iterative increments to a hyper-plane that
is orthogonal to the increments of a previous solution. The selection of this previous
solution to set the orthogonality condition is what distinguishes the types of
linearized arc-length methods.

In a version presented by Riks (1972) and Riks (1979), known as Fixed
Normal Plane (ALCM_FNP), the vectors of the iterative solution (5Ui and SA)P)

are orthogonal to the vectors of the predicted solution (3Ui* and SATP). The

application of this orthogonality condition is given in Eq. (3.90). Then, Eq. (3.27)
is used to decompose the iterative increment of displacements into a tangent and a
residual component, in Eq. (3.91). Finally, the constraint equation for calculating
the iterative increment of load ratio is obtained in Eq. (3.92), for j > 1.

8U}-8U +(8ri8A) )P-P =0 (3.90)
8U}-(62/80; +80; | +(82j1) ) P-P =0 (3.91)
S = 8U; -8V (3.92)

' UL80) +50P-P
Alternatively, a version presented by Ramm (1981) and Ramm (1982), known
as Updated Normal Plane (ALCM_UNP), uses the vectors of the incremental

solution of the previous iteration (AUi#™! and AA)™P) to set the orthogonality

condition. The constraint equation for this version is similarly obtained as follows:
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AUJ™-8U) + (A0 80 )PP =0 (3.93)

AU/ (820507 +80] | +(ar) "8 )P-P =0 (3.94)
.71 =.

S = AUiJ '6Uij (3.95)

' AUT80) + AP P

These methods are depicted in Fig. 3.14. Points Bo, B1, and B2 correspond,
respectively, to the equilibrium solution obtained with the Constant Arc-Length
Control Method (cylindrical or spherical version), Updated Normal Plane, and

Fixed Normal Plane versions of the Linear Arc-Length Control Method.

Constraint
Surface

Fixed Normal
Plane

Updated Normal
Plane

Constant
Arc-Length

Figure 3.14 — Schematic of the Linear Arc-Length Control Methods (adapted from Leon et al.,
2011)

Differently from the Constant Arc-Length Control Methods, in which the
constraint equation is nonlinear, the result of the orthogonality conditions is a
simpler linear equation, so less effort is spent evaluating the expression.

In the developed tool, the adopted strategy for the predicted increment, when
these iterative techniques are selected, is the cylindrical version of the Arc-Length
Increment (Section 3.4.1.1.3). Notice, however, that the iterative cycle do not

maintain the predicted increment of arc-length constant throughout the entire step.
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3.5.2.5. Minimum Norm Control Method

The Minimum Norm Control Method (MNCM), presented by Chan (1988),
tries to find the iterative increment of load ratio that results in the minimum
increment of displacements. This is equivalent to set the norm of the vector of
iterative increment of displacements to a minimum value. Mathematically, this
condition means that the derivative of the norm of the displacement increments with

respect to the increment of load ratio is zero. For j > 1:

sy
a(8u/-8u/) _ (3.96)
oo\
Using Eq. (3.27) to express the increment of displacements in terms of the
tangent and residual components, expanding the expression, and performing the

derivatives, we arrive at the constraint equation to satisfy the proposed condition:

a((&g’aﬂi" +50/)-(62/80) + 80 ))

L (3.97)
oS\
a((axg‘ )2 80) -850/ + 262050 -850 +60 ) -50 ) (3.98)
- = 0 .
YN
52 29,80, @99
VRV

This iterative strategy is not bound to any strategy to calculate the predicted
increment, so the cylindrical version of the Arc-Length Increment (Section
3.4.1.1.3) was selected for this purpose, due to its efficiency.

3.5.2.6. Orthogonal Residue Control Method

This strategy was proposed by Krenk (1995) and Krenk & Hededal (1995).
To summary the idea, a vector of average residual forces, Ri?, is introduced. This
average residue is defined as the difference between the external forces in the
current iteration and the internal forces in the previous iteration. For j > 1, this is

expressed as:

R = (A, + AL +81) )P —F (U, + AU/ ) = R +80/P (3.100)
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The constraint condition of this iterative technique is to take the average
vector of residual forces to be orthogonal to the incremental vector of displacements
of the previous iteration. This condition is applied by setting the scalar product

between these two vectors to zero:

R? -AUiH -0 (3.101)

which leads to the following expression for the constraint equation, for j > 1:

i1 pit
' AU*-P

As with the MNCM, this iterative strategy is not bound to any strategy to
calculate the predicted increment and it is not intended to keep the predicted
increment of any control parameter. The cylindrical version of the Arc-Length

Increment was also adopted due to its efficiency.
3.5.2.7. Generalized Displacement Control Method

The Generalized Displacement Control Method (GDCM) consists of
maintaining the predicted increment of generalized displacement, applied with the
technique described in Section 3.4.1.2.2, constant throughout the entire step. The
expression for the increment of generalized displacement was given in Eq. (3.63),
and it is reproduced here in terms of the tangent and residual increments of

displacements, for j > 1:

8D} =(81!) 80, -80! +1/80L, -80; (3.103)
To force the increment of generalized displacement to be null in each

iteration, this expression must be zero. Therefore, the following constraint equation

is obtained:

spd =~ Yia-8UL (3.104)
' 50, 80

The GDCM has little physical meaning. However, Cardoso & Fonseca (2007)
show that it can be seen as a linear arc-length method.
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3.6.Summary of Solution Methods

In the previous sections, the procedures for solving the linearized system of
equilibrium equations, by means of incremental single-step or incremental-iterative
numerical methods, were described. A flow-chart of the general solution algorithm
Is presented in the diagram of Fig. 3.15.

It is important to mention that this algorithm is general not only for the
geometrically nonlinear formulations, but also for any nonlinear structural problem,
that includes other sources of nonlinearity. The differences lie in the processes of
evaluating the tangent stiffness matrix and calculating the internal nodal forces,
which are indicated by the bold boxes in the diagram. In the developed tool, these
steps are distinguished between UL and CR formulations. The computational

implementation of these processes is described in the next chapter.

Predicted Solution

n o L 1 1
- Nev& steP Evaluate K 52} =(K?) P, Co-mpute 82y S| GUt = AL
i=i+l, j=1 from U;_, 51;11 =0 (Predictor method)
Single-Step Correction ‘
; : Single-step
JUY - n Get values of p™, o™ method
AU, = (K:) 8NP e Ki = ) o KD
i ( l) it ref i 1 t (m € [1,n])
\L T ‘l’ Incremental-
A=A, + AL Evaluate K7 ur =U,_, +p"sU! iterative
4 -t H m <€ ' ! ' method
U; =U;_, +AU; from U3 (m € [1,n]) (m € [1,n])

Yes Check convergence
IR < e][Pre

- , Y -
pl=Ap,,; Mo=AMT 48

«— R/ =PI -F | . . SN T
Evaluate F/ from U’ ul =ul"+8U]

lNo

Iterative Correction

Evaluate K f -t &

j : fomi o=

“ Compute 8} S5 = ) 6T + 5T

from U/~ 5
L

AT
K/™') R} (Corrector method)

Figure 3.15 — General solution algorithm of the incremental system of equilibrium equations

Some of the steps of the general algorithm depend on the selected methods
for calculating the predicted and the corrected solutions. The formulas to obtain the
predicted increment of load ratio for the techniques implemented in this work are
summarized in Table 3.2. Both the expression based on the previous predicted
solution and the expression based on the total increments of the previous step are
shown. In the sequence, Table 3.3 brings the equations for the corrective techniques
to calculate the iterative increment of load ratio. The adopted predictive techniques

are also indicated.
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Predictive Technique

Load Ratio Increment (i > 1)

A =s-J |30
Load Increment
(L1)
S\ =s-J|AL |
D 71
S\ =s-J|OA | ‘ P SU_if
External Work Increment P-sU;
(EWI) CP.AU.
213 [ P20
P50

Cylindrical Arc-Length Increment
(CALI)

S\ =s-J[oA],|

Spherical Arc-Length Increment
(SALI)

S\ =s-J[oA],| J _'_—1:

Ul

2
Si—s. ] AU, - AU, +(AN )
' 8U;-8U! +P-P

Generalized Displacement Increment
(GDI)

522 = 5512 [GSP]

Size adjustment factor:

%

Generalized Displacement Parameter:

83U, -8U;

50, -5U;

Increment sign:

i=1 - s=60
GSP<0 — s=-s
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Solution Method _I;ggﬁ:ﬁg\l:z Load Ratio Correction (j > 1)
Load Control LI S\ =0
-~ p.sul
Work Control EWI O\ =— Ii &i‘.
P-sU/!
CALI/ b b)Y ¢
- * —
Constant Arc-Length SALI 51 __£+S (5) -
Linear Arc-Length CAL s = 5U_il_'5ljij _
(Fixed Normal Plane) ' 8Ul-8U) +0P-P
Linear Arc-Length CALI sl = AUJ.50]
(Updated Normal Plane) ' AUJTSU +AMTTP P
_ Ji.sUl
Minimum Norm CALI oA} :—M
duU/!-8U/!
. AUJT.RIT
h | Resi ALI N =———1—
Orthogonal Residue C i AUTT. P
. Jt .80
Generalized Displacement GDI o\ = —M
dU; , -0U/!

* Parameters for Constant Arc-Length Methods:

a=50/ 50, +BP-P

b= SUij '(SGij +AUijil)+A7Lijle5~ P

c=60) -(563 + 2AuiH)

s=sign(AU/™-8U/)

Cylindrical Arc-Length > =0
Spherical Arc-Length —p=1
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4. Developed Tool

4.1.Introduction

Based on the theory presented in previous chapters on the nonlinear
formulation of equilibrium equations and the solution methods for dealing with the
incremental system, this chapter describes the development and use of a graphical-
interactive tool for performing geometrically nonlinear analysis of two-dimensional
frame structural models. This application was incorporated as a new analysis
module of the Ftool (Two-dimensional Frame Analysis Tool) program (Martha,
1999), which is a largely used software in the civil engineering community and has
demonstrated to be a valuable program for teaching structural analysis over the last
decades.

When creating a computer program to execute a task that would be manually
impractical, a series of questions must be considered besides the theoretical
understanding of the problem. These questions include concerns about memory
storage and efficiency, a data structure to manage the information in the pre, post,
and processing steps, a robust source code to avoid unexpected errors, and a good
architecture and modularization of the code to make it easy to understand, maintain,
and expand. In graphical-interactive programs, it is still necessary to design and
create a user-friendly graphical interface, predict and control user actions, and deal
with topics on computer graphics and computational geometry to provide the best
experience for those who want to simulate and visualize the physical phenomenon
studied.

All of that had to be contemplated during the development of the tool that
motivated this work. However, not all of these issues are discussed in this
document, in which the attention is turned to the implementation of the numerical
methods to perform the geometrically nonlinear analysis of two-dimensional frame
models, as well as the developed graphical user interface, considering its

functionalities and characteristics.
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The second section of this chapter is focused on the computer implementation
of the solution algorithms. The goal is to present how the concepts covered in
Chapter 3 were implemented to the developed tool by means of a step-by-step
description of an auxiliary code that has didactics purposes only. The third section
is intended to show how the developed tool works, from a user point of view, and
its main features. The new analysis menus of the graphical user interface and the

developed plotting environment are described.
4.2.Computer Implementation

The task of processing and computing the results of a mechanical analysis is
done by a solver, where the algorithms of the solution methods are implemented.
The analysis solver of the Ftool program is the FRAMOOP system, a simplified
version of the FEMOOP (Finite Element Method Object Oriented Program) system
(Martha & Parente 2002), modified to perform only linear-elastic analysis of
framed structure models. This system is an external library, leaving the Ftool
responsible for the pre and post-processing phases, while the FRAMOOP performs
the structural analysis. This strategy helps future implementations and independent
code maintenance of both programs.

The FRAMOOP system is written in the C programming language and adopts
a programming philosophy similar to the Object Oriented Programming (OOP)
paradigm (Cox & Novobilski, 1991). This programming paradigm is advantageous
for structural analysis codes, providing modularization and reusability by means of
classes, heritance, polymorphism, and encapsulation mechanisms (Rangel &
Martha, 2019). Since the C language is not object-oriented, the simulation of the
OOP paradigm in the FRAMOOP system is formally done by using pointers to
functions as macros to generically call abstract methods of super classes.

Presenting the FRAMOOP code would not be didactic, as C is a low level
programming language. For this purpose, an auxiliary program, called NLframe2D,
was developed as a parallel implementation using the MATLAB script language.
This program is a non-graphical application with the same general code structure
of the nonlinear analysis module of the FRAMOOP system. The advantage is that
MATLAB provides a programming language with a much simpler syntax, when
compared to the C language, ideal to be presented for those who are interested in

the computer implementation of an engineering problem.
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This auxiliary program is used in the next sections only to present the
implementation of the solution process of the nonlinear structural problem
considered in this work. It is important to mention that this code is a very simplified
version of what was developed in FRAMOOP. The intention here is to show the
general structure of the nonlinear analysis algorithm. Therefore, many details have
been omitted to emphasize what is pertinent to solving the problem. These details
include, for example, checks of matrix singularity and real values, among other
particularities of the implementation that are not relevant. The code also does not
bother to show the strategy to perform the analysis in an interactive-adaptive
fashion. In addition, efficiency and performance are not a concern, so code clarity
can be prioritized. It should be noted the importance of a good documentation by
means of comments that help the understanding of the code lines.

In addition, this auxiliary program is open-source, intended to receive the
collaboration and suggestions from researchers interested in the subject. It is
available for download in (the code may have been modified and updated):

https://www.mathworks.com/matlabcentral/fileexchange/73129-nlframe2d.
4.2.1. Main Algorithm

The solver of the NLframe2D program is all implemented in a single script
file, named solve.m, that contains several functions to perform the incremental
analysis. The main function of the program is responsible for implementing the
code that execute the steps of the general algorithm for nonlinear problems,
depicted in Fig. 3.15. Auxiliary functions for the particular nonlinear formulation,
such as the evaluation of the tangent stiffness matrix and the vector of internal
forces, are presented in the following sections.

The main function has the same name of the file. It receives, as input
arguments, some data structures with model information and analysis options,
which were input by user and have already been pre-processed. These pre analysis
steps are the common tasks to any computer implementation for structural analysis
using the FEM: reading model information, counting and numbering degrees-of-
freedom, assembling vectors and matrix of global degrees-of-freedom numbers, etc.
The input arguments of the main function are described in Table 4.1. The
implementation of the predicted solution is given in the code snippet of Fig. 4.1.
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Table 4.1 — Input arguments of the main solver function of the NLframe2D program

Variable

Description

Model

Data structure with fields for storing model information,
such as total number of equations (.neq), number of
equations of free degrees-of-freedom (.neqgf), etc.

Anl

Data structure with fields for storing analysis options and
parameters. The analysis options include type of
formulation (.formulation), type of geometric stiffness
matrix (.geom matrix), solution algorithm (.algorithm),
type of increment adjustment (.increment type), and
type of Newton-Raphson iteration scheme
(.iteration type). The analysis parameters include
initial load ratio increment (. increment), maximum load
ratio (.max ratio), maximum number of steps
(.max_steps), maximum number of iterations
(.max_iter), desired number of iterations
(.desired iter), and tolerance for convergence (.to1).

Elem

Vector of data structures with fields for storing element
information, such as end nodes (.nodel, .node2), initial
length (.1), initial angle with horizontal axis (.angle),
gather vector with degrees-of-freedom numbers (. g1¢), etc.

Pref

Vector of reference nodal loads, taken as the total applied
loads.

Result

Data structure to be filled with the results for each
incremental step, such as the vector of all load ratios (.1r),
and a matrix with all vectors of nodal displacements (.uv).
This structure is also an output of the function.
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function Result = solwve (Model, Anl,Elem, Pref, Result)
% Start incremental process

)
1r
i

= zeros (Model.neqg, 1)
= 0;
= 0;

while (1 < Anl.max steps && 1r < Enl.max ratio)

i=1i+1;

% Update reference configuration for UL formumlation
Elem = updRefConfiguration (Model,Elem) ;

% Tangent stiffness matrix
[Et,Elem] = tangS5tiffMcx (Model,&nl Elem,T);

% Tangent increment of displacements for predicted solution
d Ut =

solvelinearSystem (Model, EKt, Pref) ;

if (i == 1)
% Initial sign for predicted increment
s = 1:
% Imnitial increment of load ratio for predicted solution

d lr = Anl.increment;

% Store dot product of tangent increment of displacements
n2 = d Uc'*d Uc;
else
% Generalized S5tiffness Parameter
GSF = n2 / (d UL'*d Uc_1):

% BAdjust increment sign
if (GSP < 0)

3 = —3:
end

% Adjustment factor of increment size

if (Anl.increment type == ADJUSTED INCREMENT)
J = ggrt((Anl.desired iter + 1) Sod + 1)
elzeif (Anl.increment type == CONSTANT TNCREMENT)
J = 1:
end

% Predicted increment of load ratio
d 1lr = predicIncr (Model,&nl,s,J,G5F,Pref,D 1r,d 1r 1,D U,d Uc);
end

% Increment of displacements for predicted solution
d U=4d1r * d Ut;

% Store predicted results

dlr 1 =4d 1r;

d Uc_ 1 =4d Uc;

dU1 =d0uU

Figure 4.1 — Implementation of the predicted solution
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As seen in Fig. 4.1, the main function starts by initializing the vector of nodal
displacements, u, the value of load ratio, 1r, and the counter of number of steps, i.
The incremental process then begins with a loop that runs until the maximum
number of steps or the maximum load ratio value is reached. The step counter is
immediately incremented in the beginning of the incremental loop.

The predictor phase starts with the update of the reference configuration for
the UL formulation (line 10). As explained in Chapter 2, this formulation is based
on a kinematic description that takes the last obtained equilibrium configuration
(step beginning) as the reference configuration to measure the increment of
variables to reach the next equilibrium configuration. For this purpose, an auxiliary
function is called to store the values of length, angle with global X-axis, and internal
forces of each element, at the beginning of the step. These reference values are then
used in the iterative cycle to compute increments of element internal forces using
the UL formulation. This auxiliary function will not be shown because it can be
easily implemented by storing the current values of the mentioned properties in
appropriate fields of each element data structure.

The tangent stiffness matrix, kt, for the predicted solution is evaluated (line
13) considering the current equilibrium configuration, i.e., element internal forces
and nodal displacements obtained at the end of the previous step. Therefore, this
function receives the vector of element data structures and the vector of nodal
displacements, both updated with the results from the previous step, as input
arguments. This function has a particular implementation for the UL and the CR
formulations. Each implementation is described in Section 4.2.2. A check is
recommended at this point to interrupt the analysis when the evaluated tangent
matrix is singular. The tangent stiffness matrix is then used to calculate the tangent
increment of displacements, 4 ut, by solving a linear system with the reference
load vector (line 16). An auxiliary function for solving linear systems was
implemented for this task, but it is not shown here.

The next step is to calculate the predicted increment of load ratio. This task is
executed in different ways depending on whether the incremental step is the first or
not. For the first step, the initial sign of the predicted increment, s, is set to positive
(line 20). Then, the predicted increment of load ratio, 4 1r, is taken as the value

prescribed by the analyst (line 23). It is also necessary to store the squared value of
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the norm of the tangent increment of displacements in the first step, n2 (line 26).
This value is used in the expression to calculate the GSP in subsequent steps.

For the remaining incremental steps (i > 1), the GSP is calculated according
to Eq. (3.67) in line 29. The increment sign is adjusted in line 32, according to the
criterion described in Section 3.4.2, where it was explained that the sign of the
predicted increment must be inverted every time the GSP value is negative. After
that, the adjustment factor of the increment size, g, is obtained according to Eq.
(3.32). The variable 5 in the expression of line 38 stores the number of iterations
performed in the previous step, which must be increased by one to avoid division
by zero, since the predicted solution corresponds to zero iterations. If the user
selects the option to perform the analysis with constant increments, the value of the
adjustment factor is set to unity. Finally, the predicted increment of load ratio is
calculated in an auxiliary function (line 44), where the expressions of Table 3.2 are
implemented. Again, there is no need to show this function here, as it has a simple
implementation. To avoid exorbitant results, it is recommended to limit the value
of the load ratio increment returned by this function to a reasonable value.

After obtaining the predicted increment of load ratio, the predicted increment
of displacements, 4 u, is calculated according to Eq. (3.27) in line 48 (using only
the tangent increment of displacements). To finish the predictor phase, the
predicted increments of load ratio, d 1r 1, tangent displacements, 4 vt 1, and full
displacements, a_u 1, are stored to be used in the next step and in the iterative
cycle. The corrector phase then starts, and its implementation is given in Fig. 4.2.
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% Correct predicted increment of displacements (2nd order RE methods)
if (Anl.algorithm == ALG HEUN || Anl.algorithm == ALG MIDPOINT)
d U = rkCorrection(Model,Anl, Elem,Kt,Pref,d 1r,U,d_U):

end

% Increments of load ratio and displacements for current step
D 1r = d_1r;

DU =du;

% Start iterative process

i = 0;

while (j <= &nl.max iter)
% Total wvalues of load ratio and displacements
lr = 1r + d_1r;
U =0 +d0U;

% External and internal forces
P = 1lx * Pref;
[F,Elem] = intForces (Model,Anl, Elen,U,D U, d U);

% Unkalanced forces
R =PF - F;
% Check for single-step method or convergence
conv=(norm(R(1l:Model.negf) ) /norm(Pref(l:Model.negf)) < Anl.tol);
if (Anl.method type ~= METH INCE ITER || conv == 1)

break:;
end

cle of iterations

% Start/keep corrective c
3

% Tangent stiffness matrix
if (Anl.iteration_type == NR_STANDARD)

[Et,Elem] = tangStiffMtx (Model,Anl,Elem,T);
end
% Tangent and residual increments of displacements
d Ut = solvelinearSystem(Model,Kt,Pref);
d Ur

solvelinearSystem (Model Kt , R) 2

% Corrected increment of load ratio

d 1r = corrincr (Model,Anl,d Ut 1,4 U 1,d Uc,d Ur,D T,...
d 1r 1,D 1r,Pref,R):

% Corrected increment of displacements

dU=4d1lr * d Ut + d Ur;

% Increments of load ratio and displacements for current step
D1r =D 1r + d_1r;
DU =DU +d0U;

end

Figure 4.2 — Implementation of the corrected solution
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The corrector phase starts with a check of the solution method. If a second-
order single-step method is selected (Heun method or Midpoint method), an
auxiliary function is called to return the corrected solution for the increment of
displacements a_u. This function is described afterwards. Then, the increments of
load ratio and displacements for the current step (o_1r and p_u) are set as the values
obtained so far (lines 61 and 62). The counter for the number of iterations, 5, is
initialized as zero (line 65), since it is assumed that the first corrective iteration
starts only after the convergence for the predicted solution has been checked. The
iterative cycle then begins in a loop that runs until the maximum number of
iterations is reached. If this condition occurs, it is because the algorithm failed to
converge to an equilibrium configuration in the current incremental step.

In the beginning of the iterative cycle, the total values of load ratio and nodal
displacements are updated with the corrected increments obtained from the last
iteration, or with the predicted increments if it has just entered the loop (lines 68
and 69). The vector of external nodal forces, p, are easily obtained from the total
load ratio (line 72), and the vector of internal nodal forces, ¥, need to be evaluated
for the current level of nodal displacements in an auxiliary function. Just like the
function to evaluate the tangent stiffness matrix, this auxiliary function also has a
particular implementation for each nonlinear formulation. Section 4.2.3 describes
the implementation for the UL and CR formulations. The vector of residual forces,
R, IS then obtained by the difference between the vectors of external and internal
forces (line 76).

The convergence for the current iteration is checked in accordance to the
criterion based on the norm of the residual forces, given in Eq. (3.74). If this norm
is sufficiently small, when compared to the norm of the reference load vector, the
algorithm converged to a tolerable equilibrium configuration. Notice, in line 79,
that only the components related to free degrees-of-freedom of the vectors of
residual forces and reference loads are considered for taking the norms. If
convergence is guaranteed or if a single-step solution method is selected, the
algorithm exits the loop to proceed to the next incremental step. Otherwise, if
convergence has not yet been reached for incremental-iterative methods, the
algorithm proceeds to the next iterative correction and immediately increments the

counter of iteration number (line 85).
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The correction of load and displacement increments starts by checking the
type of iteration scheme. If the standard version of Newton-Raphson iterations is
selected, a new tangent stiffness matrix is evaluated with the updated configuration
(line 89), i.e., with the element internal forces and nodal displacements obtained at
the end of the previous iteration. Again, a check for matrix singularity is
recommended after evaluating the new tangent stiffness matrix. Otherwise, if the
modified version of Newton-Raphson iteration scheme is selected, the tangent
stiffness matrix evaluated at the beginning of the incremental step for the predicted
solution (line 13) continue being used.

The tangent and residual increments of the displacement corrections are
calculated with linear systems using, respectively, the reference loads and the
residual forces (lines 93 and 94). Since the same coefficient matrix is used in both
systems, an efficient program should not solve two systems separately, but optimize
the process to use the same decomposed coefficient matrix. The iterative correction
of load ratio is return by a function (line 97) that implements the expressions for
each iterative technique, presented in Table 3.3. This function is omitted here and,
just as the predicted increment of load ratio, the returned result should be limited to
a reasonable value. Furthermore, a check for a real number is recommended, since
the expressions of the Constant Arc-Length strategies (cylindrical and spherical),
given by Eq. (3.89), can assume complex values. The iterative correction of nodal
displacements is finally obtained in accordance with Eq. (3.27), in line 101. Once
the corrections of load and displacements are obtained, the incremental values of
these quantities, for the current step, are updated (lines 104 and 105). Finally, the
same process for updating total results and checking convergence, previously
described, is repeated (lines 68 to 80).

When the algorithm exists the iterative loop, a few command lines are
necessary to check if the reason for breaking was the convergence success or failure.
In case of success, the algorithm stores the results of the new obtained equilibrium
configuration. Otherwise, in case of convergence failure, the program exists the
main function and displays a warning. There is no need to show these simple code
lines. The basic results to be stored are the load ratio value and the vector of nodal
displacements, in order to plot the curve of equilibrium path. However, several
other interesting results can be stored, to provide a wider range of information to

USers.
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115 function d U = rkCorrection(Model,Anl,Elem, ¥, Pref,d 1r,U,d U)
120 % Weight coefficients:

121 % al eigl coefficient for first sampling polnt

122 5 az coefficient for second int

123 =3 z2: step position of second sampling point (zl is always 0)
124 — if (Anl.algorithm == ALG HEUN)

250 = al = 0.5;

126 — az = 0.5;

127 — z2 = 1.0;

128 — elseif (Anl.algorithm == ALG MIDPOINT)

LA = al = 0.0;

130 — a2z = 1.0;

131 - z2 = 0.5;

132 — end

133

134 % Predicted displacements to evaluate tangent matrix at 2Znd point
135 = d U =z2 =22 * d U;

136 — U =2 = U +d U z2;

137

138 % Calculate element internal forces at 2nd point

139 — [~,Elem] = intForces (Model,Anl, Elem, T z22,d U z2,d U z2);
140

141 % Tangent stiffness matrices at lst and 2nd points

142 — Etl = EKt;

143 — [E£2,~] = tangStiffMtx (Model,&nl,Elem,U 22,0);

144

1435 % Lverage stiffness matrix for current step

146 — FKa = al * Ktl + a2 * Kt2;

147

143 % Corrected increment of displacements for current step
149 — d P =4d 1r * Pref;

150 — d U = solvelinearSystem(Model,Ka,d P):

151 = end

Figure 4.3 — Implementation of the single-step correction

Figure 4.3 presents the implementation of the function to correct the predicted
increment of displacements by means of second-order single-step methods (also
known as second-order Runge-Kutta methods). This function was called in line 57
of the main function, after the predicted increments of load ratio and nodal
displacements were obtained. The function receives as input arguments,
respectively, the data structures with model, analysis, and elements information, the
tangent stiffness matrix evaluated at the beginning of the step, the reference load
vector, the predicted increment of load ratio, the total displacements, and the
predicted increment of displacements. It returns the vector of corrected increment
of displacements for the current step.

The function gets the weighting coefficients, a1 and a2, and the second
sampling point position, z2, for the selected method (lines 124 to 132), according
to Eq. (3.72) and Eq. (3.73). Notice that the position of the first sampling point is

always zero. The reason is that the tangent stiffness matrix of the beginning of the
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step is always considered for calculating the average matrix in the implemented
methods. The nodal displacements of the second sampling point, u z2, is then
calculated (lines 135 and 136). The internal forces are evaluated for this level of
displacements (line 139). Only the vector of elements with updated internal forces
is returned by the auxiliary function because the global vector of nodal internal
forces is not needed here. The tangent stiffness matrix of the first sampling point is
set as the same matrix of the beginning of the step (line 142), and the tangent matrix
of the second sampling point is evaluated with the corresponding displacements and
element internal forces (line 143). The average matrix is calculated according to
Eq. (3.71), in line 146. The corrected increment of displacements is then obtained
with a linear system using the average matrix and the vector of predicted increment

of loads.
4.2.2. Evaluation of the Tangent Stiffness Matrix

The function to evaluate the tangent stiffness matrix, for a given level of
displacements and element internal forces, is called at two moments of the main
algorithm: in the predicted solution and in the corrected solution (of the single-step
and incremental-iterative methods). The called function is only responsible for
checking the selected formulation and call the corresponding function that
implements the code for evaluating the tangent matrix. These implementations are
shown in Fig. 4.4 for the UL formulation and in Fig. 4.5 for the CR formulation.
Their input arguments are the data structures with model, analysis, and element
information, and the vector of total displacements. The outputs are the new tangent
stiffness matrix and, for the UL implementation, the vector of element data
structures with the updated elastic stiffness matrix of each element.

The tangstiffMtxul function, in Fig. 4.4, starts by initializing the global
matrix of the structural model with zeros (line 155). Its dimension is the total
number of degrees-of-freedom (number of equations) of the structure. Next, a loop
through all elements begins. The tangent stiffness matrix of each element will be
computed in the local coordinate system, rotated to the global system, and inserted

into the global matrix.
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153 function [Et,Elem] = tangStiffMtxUL (Model,Anl, Elem,U)
154 % Initialize global tangent stiffness matrix
155 - Et = zeros (Model.negq,Model.neq)

15&

157 — for i = l:Model.nel

153 % Elastic, geometric and tangent stiffness matrices
159 — ke = elasticStiffMcxUL (Elem (i), T);

160 — kg = geometricStiffMtxUL (Anl,Elem(i) , U);
161 — kt = ke + kg:

1&2

163 ¥ Store elastic stiffness matrix

lgd — Elem(i) .ke = ke;

185

led % Rotation matrix from local to global coordinate system
167 — angle = elemfAngle (Elem(i),U):

168 — = = cos (angle)

169 — S = sin(angle):

170

T30 = rot = [c - 0 0 0O 0;

172 s c 0O © 0 0

173 o o 1 o 0o 0

174 0 0 0 c-s 0O

175 0 0 0 s c 0

17& 0 0 0 ©°o 0 11]:

177

1738 % Tangent stiffness matrix in glokal system
179 — k= zxo0t * Kkt * rot';

180

181 % Assemble element matrix to global matrix
182 - gle = Elem(i).gle;

183 - Et (gle,gle) = Et(gle,gle) + k;

184 - end

1A= end

Figure 4.4 — Implementation of the tangent stiffness matrix evaluation for the Updated Lagrangian
formulation

For each element, the elastic and geometric stiffness matrices are evaluated
in auxiliary functions. The function to evaluate the elastic matrix (line 159) must
implement the expression given in Eq. (2.70). This function receives the vector of
total displacements as input argument because it needs to calculate the current
element length for the stiffness coefficients. The function to evaluate the geometric
stiffness matrix (line 160) implements one of the three types of geometric matrix,
given in Section 2.3.5.2: Small Rotation 2" Order (Eq. (2.73)), Large Rotation 2"
Order (Eq. (2.76)), or Large Rotation 4" Order (Rodrigues, 2019). This function
also needs the vector of total displacements to calculate the current element length,
the analysis options to check the matrix type, and the current element internal
forces, which are stored in the element data structure. The element tangent matrix,
in local coordinate system, is then obtained by the sum of the elastic and geometric
components (line 161). The local elastic stiffness matrix is stored in the element

data structure (line 164) to be used when computing element internal forces.
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The current element angle with the horizontal axis is calculated in an auxiliary
function (line 167). This function has a simple implementation and uses only the
initial nodal coordinates and the total displacements of nodes. The rotation matrix
of the element degrees-of-freedom from local to global coordinate system is
assembled in line 171 using the cosine and sine of the element angle, according to
Eq. (2.123). Then, the tangent stiffness matrix in local coordinate system is rotated
to the global system by pre and post multiplying it by the rotation matrix (line 179).
Finally, the element tangent matrix is inserted into the global matrix using the gather

vector (line 183), g1e, that provides the global number of element degrees-of-

freedom.

187 function Kt = tangStiffMtxCR (Model, Elem,U)

188 % Initialize global tangent stiffness matrix
189 — Kt = zeros (Model .neq,Model .neq) ;

150

dieib= for i = l:Model.nel

152 % Internal forces

AE = P = Elemii).fn(l):

194 — Ml = Elem{i).fn({2):

195 — M2 = Elem(i) .fn (3):

196

157 % Matrix of elastic stiffness coefficients
198 — Cn = elasticStiffCoeff(Elem(i))

159

200 % Transformation matrix from natural to global system
201 — L = glemlength (Elem (i), T);

202 — angle = elemfAngle (Elem(i},U):

203 = c = cos(angle)

204 — = = zin(angle);

205

208 — T=1[-c -s/L -3/L;

207 -3 c/L c/L;

208 a 1 a;

209 = s/L s/L;

210 s -cfL -cfL:

211 Q 0 1 1:

212

213 % Tangent stiffness matrix in global system
214 — r =[ -c; -8; 0; c; s8; 01]:

215 — z =[ s; -c; 0; -s; c; 01]:

21&

217 = k=T * Cn * T' +...

218 (B/L) * (z*=z') + [ (M14M2)/L"2) * (z*r' + xr¥z'):
219

220 % Assemble element matrix to global matrix
221 — gle = Elem(i) .gle;

222 — Kt (gle,gle) = Kt (gle,gle) + k;

223 — end

224 — end

Figure 4.5 — Implementation of the tangent stiffness matrix evaluation for the Corotational

formulation
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The tangstiffuMtxcr function to evaluate the tangent stiffness matrix of the
CR formulation has a very simple implementation, as shown in Fig. 4.5. Again, it
starts by initializing the global matrix of the structure (line 189), which will receive
the contribution of each element tangent matrix computed in the global coordinate
system. For each element, the internal forces (axial force and bending moments at
end nodes) are extracted from the element data structure (line 193 to 195). The
matrix of elastic stiffness coefficients that relates displacements and forces in
natural system is obtained from an auxiliary function (line 198). This function
simply returns the constant 3x3 matrix of Eq. (2.93). The transformation matrix
from natural to global system, given in Eq. (2.114), is assembled in line 206. This
matrix uses the current element length, returned by an auxiliary function (line 201),
and the cosine and sine of the element angle with the horizontal axis, also returned
by an auxiliary function (line 202). The element tangent matrix is computed in line
214, according to the expression of Eq. (2.146). This matrix is already in the global
system, and it is inserted into the global matrix using the gather vector (line 222).
This function could simply implement the final expression of each element tangent
matrix, given in Eq. (2.147), but it was opted to show it in a more didactic form.

An important aspect that was omitted in the evaluation of tangent stiffness
matrices for both UL and CR formulation was the treatment of rotation liberation
at element ends (hinges). In the FRAMOOP system, this is done by a process of
static condensation of the rotation degrees-of-freedom of the local tangent matrix.
Furthermore, the stiffness matrices for Timoshenko beam theory were also

implemented in FRAMOOP (although it was not presented in this document).
4.2.3. Evaluation of the Vector of Internal Forces

The function to evaluate the vector of internal forces, for a given level of
displacements, also has two implementations, one for each type of nonlinear
formulation. These implementations are shown in Fig. 4.6 for the UL formulation
and in Fig. 4.8 for the CR formulation. Their input arguments are the data structures
with model and element information, the vector of total displacements, and the
vector of displacement increments (accumulated step increments for the UL
formulation and iterative increments for CR formulation). The outputs are the
global vector of internal forces and the vector of elements with updated internal

forces in local or natural systems.
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244
245
246
247
2438

function [F,Elem] = intForcesUL(Model,Elem, U, D T)

%
F

nitialize glokal wvector of internal forces

zeros (Model .neqg, 1) ;

for i = 1l:Model.nel

end

end

% Lengths: Beginning of step, current, and increment
Lxr =Elem(i).L_x:

L c¢ = elemLength(Elem(i),U):

DL =L c-L r;

% Rigid body rotation from step beginning and current angle
rbr = elemfnglelncr (Elem(i},D U):
angle = Elem(i).angle_r + rbr:

% Update element angle
Elem({i).angle = angle;

% Botation matrix from local to glokal coordinate system

c = cos (angle);

sin (angle);

rot = [ c -8 0 0 0 0;
= c O 0 0O 0
o o0 1 0 o 0;
o 0 0 c-s 0O;
o 0 0 s c 0:
o 0 0 0 0 1173;
% Relative rotations
rl = D U(Elem(i).nodel.dof(3)) - rbr;
r2 = D U(Elem(i).node2.dof(3)) - rbr;

% Vector of local displacements
dl = [0; 0 ; rl; D L; 0; r2];

ncrement of internal forces

£ I
D f = Elem(i).ke * dl;

% Total internal forces in local system
fl = Elem(i).fi r + D _f;

% Store total internal forces in local system

Elem(i).fi = f1:

% Transform intermnal forces from local system to glokal system
fg = rot * f1:

% Lssemble element internal forces to global vector
gle = Elem(i) .gle;
Filgle) = Figle) + fg:

Figure 4.6 — Implementation of the internal forces evaluation for the Updated Lagrangian

formulation
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The implementation for the UL formulation starts by initializing the global
vector of internal forces (line 228). This is a column vector with dimension
equivalent to the total number of degrees-of-freedom (number of equations) of the
structure. Then, a loop through all elements is executed to compute the vector of
internal forces of each element in local system, rotate it to global system, and insert
it into the global vector.

In the beginning of the loop, the element elongation, p_1, is calculated (line
234). It is obtained by the difference between the current element length, . _c, and
the length at the reference configuration (step beginning), ._r. The current length
is returned by an auxiliary function that receives the total nodal displacements (line
233). The length at the beginning of the step was stored in the element data structure
when an auxiliary function was called in line 10 of the main function.

After that, the increment of element rotation (rigid-body rotation) from the
step beginning, rbr, is calculated (line 236). The auxiliary function for this task
receives the vector of displacement increments, from which the element rotation is
calculated. The current element angle with the horizontal axis, angle, is then
obtained (line 238) by adding the increment of rotation to the element angle of the
step beginning. The current angle is updated in the element data structure (line 241).

The reason for the incremental approach in obtaining the current element
angle, instead of simply calculate it using inverse trigonometric functions and
current nodal coordinates, is that it must account for accumulated rotations over 180
or even 360 degrees, regardless of its quadrant. An example of a situation that may
occur is provided in Fig. 4.7. An element is initially described by vector v;, and
angle with the horizontal axis B. It passes from the second to the third quadrant,
where it is describe by vector v}, and angle B’ in the new (current) configuration.
The current angle is an increased value of the old angle. However, if the current
angle is calculated using the inverse tangent function (the four-quadrant inverse
tangent function atan2) and the nodal coordinates, the result is a negative angle.
Therefore, the adopted solution is to increment the angle in small values, AP.
Special attention should be given to the function that calculates this increment.
Since the angle increment may be very small, the inverse cosine function acos
should not be used because it is admittedly inaccurate for small values. The

implemented expression to calculate the angle between two vectors is also shown.
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Figure 4.7 — Issue in calculating element rotation angle

Thereafter, the rotation matrix of the element degrees-of-freedom from local
to global system is assembled (line 247) using the cosine and sine of the current
element angle, according to Eq. (2.123). The incremental relative rotations of first
and second nodes, r1 and r2, are given by the difference between the increment of
nodal rotations and the rigid-body rotation (lines 255 and 256). A 6x1 vector of
relative displacements, 41, without rigid-body motions, is assembled with the
element elongation and the relative rotations (line 259).

The vector of internal forces increment, o £, is calculated with the product of
the elastic stiffness matrix, stored in line 164, and the vector of relative
displacements (line 262). This increment is added to the vector of total internal
forces at the step beginning to obtain the total internal forces for the current
configuration, £1, in the local coordinate system (line 265). The total internal forces
in the local coordinate system is stored in the element data structure (line 268) to
be used when evaluating the tangent stiffness matrix.

The vector of internal forces in the local system is rotated to the global system
by multiplying it by the rotation matrix (line 271). Finally, the element internal

forces are inserted into the global vector using the element gather vector (line 275).
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279 function [F,Elem] = intForcesCR(Model,Elem,U,d U)

280 % Imitialize global wector of intermnal forces

281 — F = zeros (Model.neq,l):

282

283 — for i = l:Model.nel

284 % Lengths: Beginning of analysis, current, and increment
285 — L 0 = Elem(i).L0O;

286 — L ¢ = elemlength (Elem (i), T);

287 — DL=Lc-L 0;

gg

289 % Rigid body rotation from last iteration

280 — rbr = elemAngleIncr (Elem(i),d U):

291

292 % Angles: Beginning of analysis, current, and increment
293 — angle 0 = Elem(i).angle_0O;

284 — angle c = Elem(i).angle + rkr:

285 = D angle = angle c - angle_0;

296

297 % Update element angle

298 — Elem(i).angle = angle c;

299

300 % Transformation matrix from kasic to globkal system
301 — c = cos(angle c):

302 — g = gin(angle c):

303

304 — T=1[ -c -s/L c -s8/L c:

305 -3 cfL ¢ cfL_c:

3086 Q 1 a;

307 c s/L _c s/L_c:

308 E] -c/L ¢ -c/L _c;

309 a 0 11]:

310

311 % Relative rotations

3132 — rl = TU(Elem(i).nodel.dof(3)) - D angle;

13 = r2 = U(Elem(i).node2.dof(3)) - D angle;

314

315 ctor of matural displacements

316 — [D L; rl; r2];:

317

318 % Compute and store internal forces in natural system
319 — Cn = elasticStiffCoeff(Elem(i))

320 — Elem(i).fn = Cn * dn;

321

322 % Transform internal forces from natural to global system
323 - fg =T * Elem(i).fn;

324

S25 % Assemble element intermnal forces to glokal wvector
326 — gle = Elem(i) .gle;

327 — Flgle) = Filgle) + fg:

328 — end

329 — end

Figure 4.8 — Implementation of the internal forces evaluation for the Corotational formulation
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In the implementation of the CR formulation, the first difference is using the
initial length of each element to compute its total elongation (line 287). The initial
length, ©_o, was stored in the element data structure in the pre-processing stage,
and the current length, ._c, is calculated with the total displacements.

The increment of element rotation (rigid-body rotation) from the previous
iteration, rbr, is calculated with the iterative increment of displacements (line 290).
The iterative increment of element rotation is then added to the previous element
angle with horizontal axis to obtain the current element angle (line 294). The
purpose of this incremental calculation of the current element angle is the same as
previously explained for the UL implementation. The difference now is that it is
incremented with iterative values. The total increment of the element rotation angle
(rigid-body rotation) from the beginning of the analysis, o _angle, is given by the
difference between the current angle and the initial angle (line 295). The current
angle is stored in the element data structure (line 298).

The transformation matrix from natural to global system is assembled
according to Eq. (2.114) using the cosine and sine of the current element angle (line
304). The relative rotations of first and second nodes, r1 and r2, are obtained by
the difference between total nodal rotations and total element rotation (lines 312
and 313). The 3x1 vector of natural displacements, dn, is assembled with the total
element elongation and relative nodal rotations (line 316).

The vector of force components in the natural system (axial force and bending
moments at end nodes) is given by the product of the matrix of elastic stiffness
coefficients, cn, provided in Eq. (2.93), and the vector of natural displacements (line
320). The resulting natural internal forces are readily stored in the element data
structure to be used when evaluating the tangent stiffness matrix. The internal forces
in the natural system are then rotated and expanded to the global system using the
transformation matrix (line 323). To finish each loop iteration, the internal forces,
in the global system, are assembled to the global vector (line 327).

It is notable the similarity between the implementation of the function to
evaluate internal forces for both formulations. Actually, the UL formulation uses a
Corotational approach to remove the rigid body motions from the vector of local
displacements. The non-deformable motions need to be removed from the
displacements to evaluate internal forces in any nonlinear formulation, as they can

lead to spurious force values.
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4.3.Graphical User Interface and Its Functionalities

Besides the implementation of the geometrically nonlinear analysis algorithm
in the FRAMOOP system, which is an external library responsible only for the
analysis process, the Ftool (Two-dimensional Frame Analysis Tool) program
(Martha, 1999) also needed to be modified in order to receive the new
functionalities of nonlinear analyses. This section is dedicated to presenting the new
version of the Ftool program, showing the modifications from a user point of view,
I.e., the new features in the graphical interface, their purposes, and how to use them.

The Ftool program (https://www.ftool.com.br) was conceived in 1991, from
a research project of the Tecgraf Institute of Technical-Scientific Software
Development of PUC-Rio (Tecgraf/PUC-Ri0). It consists of a graphical-interactive
structural analysis program, based on the direct manipulation of structural models
via mouse and keyboard. Its main goal is to provide a software that motivates the
engineering student to learn the theory of structural analysis methods by showing
how frame models behave in practice. There is no concern to teach the mathematical
and computational processes for the analysis of these structures. Therefore, Ftool
needs to be a simple application that brings together, in a single platform, all the
necessary resources for efficient model creation and manipulation, with attributes
application (pre-processing), fast and transparent numerical analysis (solver), and
fast and effective visualization of results (post-processing). This integration of all
phases of the structural analysis is the fundamental aspect in the learning process,
providing students with a complete control over the model being analyzed and
allowing them to quickly experiment different structural conceptions and, thus,
better understand the behavior of structures.

Given the purposes of the program, during its creation, it was necessary a data
structure that was common to all phases of the simulation. The data structure should
allow the detection of inconsistencies in the model definition, an efficient way to
register adjacency relations between model entities, and provide efficient geometric
operators, including the automatic detection of member intersection. The chosen
data structure is centered on a complete topological representation of a planar
subdivision, with efficient search for adjacency information based on the theory of
solid modeling (Mantyl&, 1988), called Half-Edge Data Structure (HED) (Carvalho
etal., 1990).
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Moreover, the program must offer a user-friendly graphical interface, with
intuitive resources. The graphical user interface of the Ftool program is built using
the IUP (Portable User Interface) system (Levy et al., 1996), developed at
Tecgraf/PUC-Rio. This system is a multi-platform toolkit that offers a simple API
(Application Program Interface) with many functions for creating and manipulating
dialogs and interface elements in different programming languages, including C. It
is intended to allow the developed software to be executed on various platforms by
simply recompiling it on the desired platform and linking it with the appropriate
graphic libraries, without the need to modify the source code, which gives the
program a high portability. This portability is only possible because IUP uses native
interface elements of the operating systems. The layout of the interface elements
within the Ftool dialog is stored in a text file written in LED (Dialog Specification
Language). The LED file is converted to a C file that is compiled with the rest of
the Ftool code.

These described characteristics of the Ftool development are responsible for
its success in teaching structural engineering over the last decades. It has been used
on solid mechanics, structural analysis, and structural design courses at many
universities all over the world. Because of that, it provides the ideal environment
for the intuitive nonlinear analysis module developed in this work. Thereby, the
program gains important features that bring more possibilities to be explored in
academic and professional activities. Despite the advanced concepts involved in the
nonlinear analysis, Ftool will retain the simplicity features already enshrined in
previous versions, as its basic purpose remains educational.

To support this new version, the main window of the program had to be
modified. Figure 4.9 shows the main dialog of Ftool, highlighting the buttons to
display the new menus created for this work: Analysis Menu and Plotting Menu.
When selected, these menus appear along the right side of the screen, and their

features are described next.
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Figure 4.9 — Developed menus for performing nonlinear analyses in the Ftool program
4.3.1. Analysis Options and Parameters

In the Analysis Menu, users can switch between the linear-elastic analysis
and the geometrically nonlinear analysis with a drop-down list, entitled Analysis
Type, that offers both options. The former is the default option when a new model
is created. When this option is selected, the Analysis Menu turns empty. In this
case, the program works as in previous versions, with the analysis being
automatically performed when a diagram result is requested. On the other hand,
when the geometrically nonlinear analysis is selected, a series of options and
parameters show up to be set by users. In this case, the analysis must be launched
manually before checking the results. The reasons for requesting a manual analysis
for the nonlinear behavior were given throughout this work: the convergence is not
always achieved, the results may vary slightly for different methods and parameters
used, and it is desired to study the history of equilibrium solutions of the structural

model with an incremental approach.
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The Analysis Menu is shown in Fig. 4.10. It can be seen that the nonlinear
analysis options and parameters are organized in two tabs: Options tab (Fig. 4.10a)
and Parameters tab (Fig. 4.10b). The former is designed to provide a wide range of
options related to the nonlinear formulation and to the strategies to solve the
problem. The latter is where analysts can provide the numerical parameters that are

used by these strategies.

Analysis Type Analysis Type
Nonlinear (Geometry) MNonlinear (Geometry) ~
Options  Parameters Options Parameters

Formulation
Kinematics Increment: 0.01
Updated Lagrangian  ~ Limit load ratio: 1.00
Geometric stiffness matrix Max. steps: 1000
Small rot, 2nd order  ~ Desired iterations: 3
Max, iterations: 100

Sobver

Telerance: | 0.00001

Solution algorithm

Cylindrical arc-length

Increment type

Adjusted ~
Iteration type
M.R. Standard ~
r M » M
Run analysis to get results... Run analysis to get results...
(@) (b)

Figure 4.10 — Nonlinear analysis menu showing (a) analysis options and (b) analysis parameters

In the Options tab, a Formulation panel provides options for the kinematic
description used to formulate the nonlinear structural problem, which were
described in Chapter 2: Updated Lagrangian formulation and Corotational
formulation. In the same panel, the type of geometric stiffness matrix can also be
selected. If the UL formulation is set as the kinematic description, three options of
geometric stiffness matrix are available: Small Rotation 2" Order (Eq. (2.73)),
Large Rotation 2" Order (Eq. (2.76)), and Large Rotation 4™ Order (Rodrigues,
2019). On the other hand, if the CR formulation is selected as kinematics, the
geometric matrix option is locked in Small Rotation 2" Order, which corresponds

to the only stiffness matrix developed for this formulation (Eq. (2.147)).
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A second panel in the Options tab, entitled Solver, contains the options related
to the strategies to solve the nonlinear problem, which were discussed in Chapter 3.
In the Solution algorithm pop-up menu, users can select one of the single-step or
incremental-iterative methods implemented to perform the analysis. The type of
increment can be set right below the solution method. This option can be set to
adjusted or constant. The adjusted option automatically modifies the size of the
predicted increment of load ratio according to the degree of nonlinearity of the
solution. The constant option does not use the adjustment factor of the methods
based on the number of iterations to modify the predicted increment, keeping the
increment of the control parameter with the prescribed value for the entire analysis.
The last option is the specification of the iteration scheme to be used in incremental-
iterative methods. The available options are the standard and modified versions of
the Newton-Raphson (N.R.) iteration scheme, which define whether the tangent
stiffness matrix is updated in all iterations or just at the beginning of the incremental
step. This option is not available to be set in incremental single-step methods.

In the Parameters tab, the first input field is the value of the predicted
increment of load ratio for the first analysis step. If the increment type option is set
to adjusted, this predicted increment is automatically modified in subsequent steps,
to optimize the analysis. Otherwise, if the increment type option is set to constant,
it remains the same in all steps. The next two parameters (limit load ratio and
maximum number of steps) determine when the analysis will stop. When any of
these limiting values, of load ratio or steps, is reached, the analysis breaks. It is not
guaranteed that the solution will be obtained up to these values, as problems related
convergence, stiffness matrix singularity, and complex numbers can occur earlier.
Following is the desired number of iterations, which defines the N; value in Eq.
(3.32). Since this parameter is only used to adjust the predicted increment size, its
input field is inactive if the increment type option is set to constant. The last two
parameters (maximum number of iterations and tolerance) are information for the
convergence criterion. The former defines the number of iterations to be performed
within an incremental step to assume that the algorithm failed to converge to an
equilibrium solution. The latter is the value of the numerical tolerance, variable ¢
used in Eq. (3.74), to assume that an equilibrium configuration has been established.
Notice that the last three parameters are information related to incremental-iterative

methods only, so they stay inactive when a single-step method is selected.
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Below the tabs of options and parameters are the analysis control buttons.
These buttons allow users to have full control of the nonlinear analysis and perform
it in an interactive-adaptive fashion. There are four control buttons: Reset,
Backward, Play, and Forward.

The Play button runs the analysis up to the maximum number of steps, the
limit value of load ratio, or the detection of a problem. The analysis only starts if it
is verified that the model is stable and the attributes have been set correctly. When
the nonlinear analysis starts, and reaches convergence at least in the first step, the
program enters in post-processing mode. That is, the modeling options stay blocked
and users can request any diagram result. The default diagram that is exhibited after
the analysis stops is the deformed configuration. If a problem is detected before the
end of the analysis, the result is shown for the last obtained equilibrium
configuration. The Forward button performs a single step at a time. The Backward
button is only enabled when at least one analysis step has been successfully
performed. This button returns the analysis in one step, by cleaning the saved
information of the removed step. To return a selected number of steps, one can click
on the desired step number in the analysis feedback at the bottom of the menu and
then press the Backward button. The Reset button is also enabled only when the
analysis is running. When clicked, all analysis information is cleaned and the
program returns to pre-processing mode. A keyboard shortcut has been set for each
of these control buttons.

Changes in any of the analysis options and parameters are allowed in between
steps, so the analysis will resume with the new input data. This possibility to
perform the analysis in an interactive-adaptive way is an important feature of the
developed tool. When a non-converging point is found, one can change the
parameters or use other solution method, in the same analysis, to go beyond that
point without having to restart the entire process. These options for driving the
analysis can help even experienced users to work with numerical algorithms, and
increase their sensitivity on the use of the numerical methods to obtain the nonlinear
response, allowing studies on the influence of the input parameters to the converged
solution. The implementation of these control options was done by saving to a
linked list all the necessary data to start the analysis at any given step, based on the
history of the results.
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A step-by-step feedback of the analysis progress is given in a text field at the
bottom of the Analysis Menu. It dynamically provides the step number, load ratio,

and number of performed iteration after each increment.

4.3.2. Plotting Environment

One of the most important result in a nonlinear analysis is the history of the
behavior of some variables, especially the relation between the load ratio and the
displacement of a particular degree-of-freedom in the equilibrium configurations,
also known as equilibrium path. The best way to show these results is in the form
of graphs. For this reason, a sophisticated graph-plotting environment was
developed, where users can create interactive graphs and select between several
options of data to be plotted in each axis.

The new plotting area of the Ftool program is developed and managed by an
additional control of the IUP system called lupPlot, which provides a library of
functions to deal with graph plotting. The developed menu for creating and

controlling graphs is shown in Fig. 4.11, with an empty graph.
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Figure 4.11 — Plotting Menu showing an empty graph
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When the Plotting Menu button is clicked, the program enters in plotting
mode. This mode is a new state of the program in which the canvas, where the
model is drawn, is replaced with the plotting area; The options of the edit toolbar,
on the left side of the screen, for the creation and manipulation of models, are
disabled; The coordinate controls at the bottom of the screen is replaced with graph
control options; The Plotting menu is displayed on the right side of the screen.

The menu initially displays a drop-down list with the created graphs, and five
managing buttons. The graph selected in the drop-down list appears in the plotting
area. If no graph has been created or the option None is selected, the potting area
will be blank.

The first managing button is the New button. When clicked, a few options for
creating a new graph are displayed: graph label, X-axis data, and Y-axis data (Fig.
4.12). The label is the string that appears on the graph title. The X and Y-axis data
are the information that can be plotted on each axis. The available options are nodal
displacement, load ratio, step number, displacement increment, and load ratio
increment. The default information is nodal displacement for the X-axis and load
ratio for the Y-axis, i.e., the conventional graph of equilibrium path. With these
options, many aspects of the solution can be investigated. For example, one can
create a graph that shows the relation between the displacements of two degrees-
of-freedom as the analysis goes on, or study the behavior of the load ratio increment
for each analysis step, and so on. When the new graph is created, it appears empty
in the plotting area.

Result Graphs
Mew Label:
Graph Label
X axis data:

Modal Displacernent

Y axis data:
Load Ratio e

Done

Cancel

Figure 4.12 — Options for creating a new graph
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The other managing buttons are the Import button, to load a created graph
from a data file that has been saved, the Rename and Remove buttons, to rename
and delete the current selected graph, and the Export button, to save the information
of the current graph to a data file.

When a created or imported graph is selected from the drop-down list, some
options appear in the Plotting Menu, below the managing buttons. The first is the
update type of the current graph. Each graph can be set as static or dynamic. Static
graphs never change its data while dynamic graphs are automatically updated with
the ongoing analysis. This means that when the analysis step changes, the graph
updates its data to be synchronized with the analysis. In addition, the properties of
the curves of a dynamic graph can be changed at any time. Imported graphs from
other analysis cannot be set as dynamic.

Next is the Curve Properties panel, where users can add new curves to the
current graph by setting their properties. For a curve to be added, a label must be
provided. Then, the degree-of-freedom for each axis data must be specified by
providing the node number and selecting one of its three degrees-of-freedom. To
assist users, when the cursor is placed in the text field to provide the node number,
the model appears on the screen and the desired node can be picked with a mouse
click. Depending on the data type, it is not necessary to specify a degree-of-freedom
for the axis. For example, an axis that plots the value of the load ratio does not need
the information of a degree-of-freedom, so these options are blocked for that axis.

Before adding the new curve, the last option to be set is the type of result for
that curve. Two options can be selected: steps and iterations. The former indicates
that the curve points correspond only to the converged equilibrium solutions. The
latter plots the solutions obtained in all iterations, so that users can examine the
behavior of the iterative cycle within each analysis step of incremental-iterative
methods. A more in-depth study of the solution algorithms can be done from this
feature. After setting the curve properties, it can be added to the graph with the Add
button. When an existing curve is clicked, it is highlighted and its properties appear
in the Plotting Menu, also enabling the Remove button next to the Add button. As
commented earlier, if the current graph, to which the selected curve belongs, is
dynamic, the curve properties can be changed. Otherwise, only its label can be
modified.
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The graph control toolbar at the bottom of the screen (Fig. 4.13a) brings
options to reverse the axes directions, display or hide the grid and legend, swap axes
data and properties, and open a dialog with all the curves of the current graph, where
users can select which ones are displayed. In addition, a properties menu (Fig.
4.13b) can be accessed by right clicking on the graph. In this menu, many visual
properties of the graph can be set, such as colors, limits, curve thickness, etc.

[ JReverse X [ |ReverseY [ |Grid [ ] Legend Swap Axes Curves X -0.1375118 | Y2 0.7748018
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Figure 4.13 — Graph control toolbar (a) and properties menu (b)
4.3.3. Diagram Results

In addition to graph results, usual diagram results of internal forces (axial
force, shear force, and bending moment) and deformed shape are also provided in
the geometrically nonlinear analysis. All these diagrams are plotted over the initial
(undeformed) configuration of the model to ease visualization and interpretation.
Unlike a linear-elastic analysis, in which the deformed configuration is interpolated
from nodal displacements using shape functions, the deformed configuration of a
geometrically nonlinear analysis is drawn with straight lines connecting the
deformed nodal coordinates. The reason is that the shape functions used in linear
analyses cannot represent well the nonlinear deformations, leading to erroneous

deflection modes.
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5. Numerical Results

5.1.Introduction

In this chapter, four benchmark problems are analyzed, each one with a
distinct nonlinear behavior. The first two problems consist, respectively, of a
cantilever beam under a vertical point load and a concentrated moment at the tip.
These models do not present any critical point along the equilibrium path, but some
interesting aspects of the geometrically nonlinear analysis can be demonstrated with
them. The third problem is the Williams Toggle Frame, which includes a snap-
through behavior in its solution. Finally, the last problem is the Lee Frame, whose
solution has the strongest nonlinearities among the analyzed examples, with load
and displacement limit points in its equilibrium path.

The analysis of these models has two main goals. One is to validate the results
obtained by the new version of the Ftool program, based on the analytical or
numerical solutions for the geometrically nonlinear behavior of the benchmark
problems. The second is to carry out a study on the performance of the incremental-
iterative methods and the geometrically nonlinear formulations implemented in the
program to solve the system of equilibrium equations. The solution methods were
described in Chapter 3, which include 9 incremental-iterative methods. The
nonlinear formulations were presented in Chapter 2, which are the Updated
Lagrangian formulations (Small Rotation 2" Order, Large Rotation 2" Order, and
Large Rotation 4™ Order) and the Corotational formulation.

To accomplish the performance evaluation, each solution method is used
together with each nonlinear formulation, considering different analysis options
(type of increment and type of iteration scheme) to trace the equilibrium path. Four
series of analyses are then performed in each example, and their results are grouped
into tables. These tables consider the following combinations of analysis options to
solve the problem with all methods and formulations: constant increments with
standard iteration scheme; constant increments with modified iteration scheme;

adjusted increments with standard iteration scheme; adjusted increments with
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modified iteration scheme. The numerical parameters, such as initial increment,
tolerance for convergence, etc., are the same for all the analyses.

Remember that the difference between constant and adjusted increments is
whether or not to use the adjustment factor to automatically modify the size of the
predicted increment of load ratio according to the degree of nonlinearity of the
solution. This is valid for the methods in which the increment strategy is based on
the number of iterations (all but the GDCM), described in Section 3.4.1.1. The
difference between the standard and modified iteration schemes is whether the
tangent stiffness matrix is updated in all iterations or just at the beginning of the
incremental step, as explained in Section 3.3.2.

The adopted criteria to measure the performance and efficiency of the
solution methods and nonlinear formulations are based on the number of steps and
corrective iterations. In each cell of the result tables, the first line indicates,
respectively, the total number of steps and the total number of corrective iterations
to complete the analysis. The average number of iterations per step is indicated on
the second line, between parentheses. Keep in mind that the corrective iterations do
not include the predicted step. When the solver fails to capture full solution, it is
indicated by an “X”. The mean values of steps and iterations are also provided, but
approximated to the nearest integer, and considering only the successfully
performed analysis of each line or column of the table.

In addition, some other aspects of geometrically nonlinear analyses are
worked in the examples. The importance and effects of discretizing each beam
element is shown for the first two models. It is concluded that, for the implemented
formulations, a 10-elements discretization is sufficiently fine to match the analytical
solution of a beam subjected to shear force and bending. The numerical equivalency
of the nonlinear formulations is also checked for plane beam elements with Euler-
Bernoulli behavior, i.e., the solution obtained with the different formulations are
numerically the same, what changes is the performance and efficiency when solving
the problem. A few more results that can be extracted from the Ftool program are

also shown, including graphs other than the classical curve of the equilibrium path.
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5.2.Cantilever Beam with Vertical Tip Load

The first example is a simple model of a cantilever beam with a vertical load
at the free end, illustrated in Fig. 5.1. The beam is 1 meter long, the material has a
modulus of elasticity of E = 10" kN/m?, the cross-section has an area of A = 102 m?
and moment of inertia of I = 10> m*, and the magnitude of the applied load is P =
1000 kN. The displacements and rotation of the degrees-of-freedom of the free node

(u, v, 6) are also indicated. Euler-Bernoulli bending behavior is assumed.

P = 1000kN
E=10"kN/m?® A=10"2m? [=10"5m* l
u

1
|

I L=1m
Figure 5.1 — Cantilever beam with vertical tip load

The analytical solution for this problem was studied by Bisshopp & Drucker
(1945) and Mattiasson (1981) using elliptical integrals. The dimensionless results
of the transcendental elliptical functions are frequently used to validate numerical

models and they are given in Table 5.1 (Timoshenko & Gere, 1982).

Table 5.1 — Analytical solution for the cantilever beam with vertical tip load

PL?/EI u/L v/L
0.00 0.000 0.000
0.25 0.004 0.083
0.50 0.016 0.162
0.75 0.034 0.235
1.00 0.056 0.302
2.00 0.160 0.494
3.00 0.255 0.603
4.00 0.329 0.670
5.00 0.388 0.714
6.00 0.434 0.744
7.00 0.472 0.767
8.00 0.504 0.785
9.00 0.531 0.799
10.00 0.555 0.811
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Initially, a study on the model discretization will be conducted. The results
will be shown for a 1-element discretization of the beam, which is done in a linear-
elastic analysis without loss of precision, and for a discretization of 10 equal length
elements to show that nonlinear results depend on model refinement to converge to
the analytical solution. Furthermore, the numerical equivalency of the
geometrically nonlinear formulations implemented is verified.

Figure 5.2 shows the deformed configuration exhibited by the Ftool program
for different load levels, from the beginning of the analysis to the total load, using
the two refinements. The corresponding load ratio value of each configuration is
indicated. The deformed configuration of the single element discretization is drawn
with a straight line from the deformed position of first and second nodes, while the
discretized model uses piecewise linear segments between the deformed nodal
coordinates. The beam discretized by multiple elements better represents the real
behavior, as it will be proved by the numerical results. Clearly, an expected
consequence of the poor discretization of this model is that the vertical

displacement of the free node becomes greater than the analytical solution.

1=0.00 f—————— 2=0.00
T 3=0.05 T 2=0.05
T 3=0.10 2=0.10
~ 2=0.20
~2=0.20
2=0.50
N 2=0.50 1 2=1.00
\3=1.00
(@) (b)

Figure 5.2 — Example 1: Deformed configurations of the cantilever beam with (a) 1-element and
(b) 10-elements discretization
The geometrically nonlinear behavior of this model is simple, with a smooth
equilibrium path that does not present any critical point. As the load increases, the
structure becomes stiffer, which is caused by tension stiffening of the beam in its

deformed configuration.
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The equilibrium paths for the horizontal and vertical displacements of the 1-
element discretized model are shown in Fig. 5.3 and Fig. 5.4, respectively. The
equilibrium paths for the horizontal and vertical displacements of the 10-elements
discretization are shown in Fig. 5.5 and Fig. 5.6, respectively. In each graph, the
results obtained with different nonlinear formulations are compared to the
analytical solution. For each nonlinear formulation, the equilibrium configurations
were obtained with the Load Control Method, since there is no load limit point in
the solution. A constant increment of 0.01, with the standard Newton-Raphson
iteration scheme and a tolerance of 10°°, were employed to perform the analysis.

As expected, the results of the poorly discretized model tend to move away
from the analytical solution as the behavior of the structure leaves the region in
which it can be considered linear. The 10-elements discretization, on the other hand,
provides results very close to the analytical solution. It is also noticed that the
results for different nonlinear formulations are numerically the same, and their
curves are overlapping on the graphs.

The relative error of the 1-element discretization, between the average result
of the different formulations and the analytical solution, at the last point, is 14.95%
for the horizontal displacement and 16.15% for the vertical displacement. For the
10-elements discretization, this error is 0.36% for the horizontal displacement and
0.98% for the vertical displacement. As commented, the consequence of a bad
discretization of this model is a larger value of vertical displacements.

The internal force diagrams corresponding to the application of the total load
are shown in Fig. 5.7 for both refinements. The diagrams are plotted over the initial
configuration of the model to help visualization of the results. In the discretized
model, it can be noted that the free end has a greater normal force and a smaller
shear force than the fixed end because the applied force (constant vertical direction)
acts almost in the axial direction of the beam in the final configuration. The bending
moment at the fixed end is notably smaller than the result expected for a linear

analysis because the lever arm of the applied load is smaller.


DBD
PUC-Rio - Certificação Digital Nº 1712771/CA


PUC-Rio- CertificagaoDigital N° 1712771/CA

F

Load Ratio (1)

Lead Ratio (1)

158

1.00
0.90
0.80
0.70

0.60

0.00
0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70

Horizontal Displacement (u) [m]

igure 5.3 — Example 1: Horizontal displacement of the free end with a 1-element discretization
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Vertical Displacement (V) [m]

Figure 5.4 — Example 1: Vertical displacement of the free end with a 1-element discretization
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Load Ratio (1)

0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60

Horizontal Displacement (1) [m]

Figure 5.5 — Example 1: Horizontal displacement of the free end with a 10-elements discretization

Load Ratio (1)

0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70 -0.80 -0.90
Vertical Displacement (v) [m]

Figure 5.6 — Example 1: Vertical displacement of the free end with a 10-elements discretization
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358
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m 680
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Figure 5.7 — Internal force diagrams of the cantilever beam with 1-element and 10-elements
discretization

The study on the performance of the incremental-iterative methods and the
nonlinear formulations, when using different analysis options to trace the
equilibrium path, is presented in Table 5.2 to Table 5.5. The numerical parameters
used in all analyses are the same: an initial increment of 0.01, a maximum number
of iterations per step of 500, a tolerance for convergence of 10, and a desired
number of iteration of 3 (when the increment is adjusted). An equally spaced 10-
elements discretization of the beam, which proved to be sufficient for obtaining a
satisfactory result, is considered in all analyses. The total number of steps and
corrective iterations to obtain full response with a particular analysis setting are

provided in each table, as described in the introduction.
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Table 5.2 — Example 1: Number of steps and iterations for constant increments with standard

iteration scheme

SR20 | LR20 | LR40 CR Mean
=y 100190 | 100[300 | 100[300 | 100|122 | 100|228
(190) | (300) | (300) | (122) | (228
wem 32|95 | 32|108 | 32|108 | 32|61 | 32]93
297) | (338) | (338) | (191) | (291
52|133 | 54162 | 54|162 | 52(94 | 53|114
ALCM_FNP 75 56) (3.00) (3.00) (1.81) (2.15)
52|133 | 54162 | 54|162 | 52(94 | 53|114
ALCM_UNP 5 56 (3.00) (3.00) | (L81) (2.15)
32195 | 382|107 | 382|107 | 32|42 | 32|88
ALCM_CYL |5 o7) (3.34) (3.34) (1.31) (2.75)
100190 | 100[300 | 100[300 | 100|122 | 100|228
ALCM_SPH |1 90) (3.00) (3.00) (1.22) (2.28)
32195 | 382|107 | 321107 | 32|42 | 32|88
MNCM (2.97) (3.34) (3.34) (1.31) (2.75)
ORCM X X X X X
coeM 33198 | 33|110 | 33|110 | 33|42 | 33|90
297 | (333 | (333 | @ | @m)
o 541129 | 55170 | 55|170 | 54[77 | 54]136
239) | (309 | (309) | (143) | (252

Table 5.3 — Example 1: Number of steps and iterations for constant increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
wem 321256 | 321272 | 32|272 | 32|270 | 32]268

(8.00) (8.50) (8.50) (8.44) (8.38)

ALCM FNP| X X X X X

ALCM_UNP| X X X X X

32[239 | 232|245 | 32|245 | 32|245 | 32244

ALCM_CYL "7 47) (7.66) (7.66) (7.66) (7.63)

ALCM_SPH| X X X X X

ey | 321239 | 32[245 | 32(245 | 32|24 | 382|243
(7.47) (7.66) (7.66) (7.63) (7.59)

orem | 271342 | 27353 | 27[353 | 27]365 | 27353
1267y | (1307) | (1307) | (1352) | (13.07)

cocm | 331236 | 331243 | 33[243 | 33]241 | 33|24l
(7.15) (7.36) (7.36) (7.30) (7.30)

o 310|242 | 31(252 | 31]252 | 311273 | 31[276
(7.81) (8.13) (8.13) (8.81) (8.90)
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Table 5.4 — Example 1: Number of steps and iterations for adjusted increments with standard

iteration scheme

SR20 | LR20 | LR4O CR Mean
=y 51[140 | 100]300 | 100|300 | 30|71 | 70]203
(2.75) (3.00) (3.00) (2.37) (2.90)
wem 32(95 | 38[122 | 38|122 | 13|32 | 30|93
(2.97) (3.21) (3.21) (2.38) (3.10)
47(137 | 54|162 | 54|162 | 27|71 | 46133
ALCM_FNP 15 g1 (3.00) (3.00) (2.63) (2.89)
47(137 | 54|162 | 54|162 | 27|71 | 46133
ALCM_UNP 15 99 (3.00) (3.00) (2.63) (2.89)
32(95 | 38[122 | 38|122 | 13|30 | 30|92
ALCM_CYL |5 o7) (3.21) (3.21) (2.31) (3.07)
51[140 | 100300 | 100300 | 30[71 | 70]203
ALCM_SPH |5 75) (3.00) (3.00) (2.37) (2.90)
32(95 | 38[122 | 38|122 | 13|30 | 30|92
MNCM (2.97) (3.21) (3.21) (2.31) (3.07)
ORCM X X X X X
coeMm 3398 | 33[110 | 33|110 | 33|42 | 33|90
(2.97) (3.33) (3.33) (1.86) (2.73)
o A1[117 | 57|175 | 57|175 | 23]52 | 44]130
(2.85) (3.07) (3.07) (2.26) (2.95)

Table 5.5 — Example 1: Number of steps and iterations for adjusted increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
wem 741232 | 721226 | 72]226 | 731228 | 73]228

(3.14) (3.14) (3.14) (3.12) (3.12)

ALCM FNP| X X X X X

ALCM_UNP| X X X X X

691215 | 69[216 | 69]216 | 69|215 | 69]216
ALCM_CYL "5 19 (3.13) (3.13) (3.12) (3.13)

ALCM_SPH| X X X X X

ey | 691215 | 691216 | 69]26 | 69]215 | 69216
(3.12) (3.13) (3.13) (3.12) (3.13)

oren | 781248 | 770245 | 77[245 | 77(245 | 77246
(3.18) (3.18) (3.18) (3.18) (3.19)

cocm | 331236 | 331243 | 33[243 | 33[241 | 33241
(7.15) (7.36) (7.36) (7.30) (7.30)

o 651229 | 64[229 | 641229 | 641229 | 64]229
(3.52) (3.58) (3.58) (3.58) (3.58)
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In all successfully performed analyses, the numerical results obtained with
different settings were equivalent, i.e., the equilibrium paths for distinct methods,
formulations, increment and iteration types are all overlapped. However, not all of
these analysis settings were able to capture full solution, and performance (number
of steps and iterations) also changes between them.

In the first tests, using constant increments and standard iterations, the ORCM
did not work well. In this case, the iterative corrections caused the load ratio to
explode to a very high value during the fourth step of the analysis. The other
methods had similar performances, when considering the average number of
iterations per step. This average has a greater variation for the results from different
formulations. The CR formulation required the lowest number of iterations to
complete the analysis, being is the most efficient for this case.

Using constant increments but with the modified iteration scheme, the LCM,
ALCM_FNP, ALCM_UNP, and ALCM_SPH were not able to solve the problem.
These methods could not reach convergence in the first step. On the other hand, the
ORCM, which failed with the standard scheme, was able to solve the problem, but
with a higher number of iterations per step than the other methods. The CR
formulation, which provided the most efficient results for the standard iteration
scheme, cannot be considered the most advantageous for this case. Furthermore, it
is observed that, for all the successfully performed analyses, the number of steps is
the same of the previous table, but more iterations are executed. This is an expected
result of not updating the tangent stiffness matrix in all iterations.

In the tests with adjusted increments and standard iterations (Table 5.4), it is
noted that the number of steps decreased compared to Table 5.2, for the analyzes
that had an average number of iterations of less than 3 (desired number). The reason
is that to adjust each step to perform the desired number of iterations, the size of the
steps had to be larger. The analyzes with an average number of iterations greater
than 3 (when constant steps were used) had their step size decreased, and
consequently more steps were performed. Again, the ORCM did not work well, and
the CR formulation was the most efficient. However, in some cases the number of
steps performed by the CR formulation was very small, leading to a less smooth

curve for the equilibrium path.
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The last tests, combining adjusted increments with modified iterations, show
that the LCM, ALCM_FNP, ALCM_UNP, and ALCM_SPH keep failing to solve
the problem. The general number of steps is higher than in the previous table
because smaller increments are necessary to hold the number of modified iterations
to the desired value. It is interesting to note that the performance of the methods
and formulations became more homogeneous. The only discrepancy is the GDCM,
which uses a different parameter to adjust the increment size that is not based on
the number of iterations (it uses the GSP parameter).

Some concluding remarks about this model is that the ORCM does not work
well when the standard iteration scheme is used. Several other methods are not able
to solve the problem when the modified iteration scheme is employed. As
previously mentioned in this work, for increasing stiffness systems, the modified
iteration scheme is not good (McGuire et al., 2000), which explains why more
methods have failed with the modified iterations. The CR formulation is more
efficient than the other formulations, when using the standard iterations. This is not
true for the modified iteration scheme. It should be noted that, in all analyses, the
performance of the ALCM_FNP and ALCM_UNP were the same, as well as the
performance of the LR20 and LR40O formulations.

Some other interesting results that can be obtained from the new version of
the Ftool program are shown next. These results were obtained for a 10-elements
discretization, analyzed with the LCM, a constant increment of 0.01, and the
standard iteration scheme. Fig. 5.8 shows the graph-plotting environment with a
chart of the relation between the horizontal and vertical displacements (red),
horizontal displacement and rotation (blue), and vertical displacement and rotation
(green) of the free end of the beam. Figures 5.9 and 5.10 provide the values of the
displacements and rotation of the beam tip as well as the increment of these
quantities for each analysis step. Notably, the curves of Fig. 5.9 represent the
tangent of the curves of Fig. 5.10. Finally, in Fig. 5.11, a portion of the equilibrium
path, with three converged equilibrium configurations, is shown with the results for
each iteration of the LCM. Clearly, a load increment is given at each step and kept
constant at each iteration.
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Figure 5.8 — Relation between nodal displacements and rotation
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Figure 5.9 —Nodal displacements and rotation for each step
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Figure 5.10 —Increments of nodal displacements and rotation for each step
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Figure 5.11 —Equilibrium path showing incremental and iterative results
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5.3.Cantilever Beam with End Moment

The second example deals with the same model of the previous section.
However, instead of a vertical load, a concentrated bending moment, M, is applied
at the tip of the cantilever beam. The beam is illustrated in Fig. 5.12, with its
physical and geometric properties provided and the displacements and rotation of

the free end indicated.
M = 200m kN

E=10"kN/m? A=10"2m? [=105m*
. v
3 v J
1_%
1

I L=1m

Figure 5.12 — Cantilever beam with end moment

This problem has been analyzed by a number of researchers in order to test
new nonlinear formulations and solution methods under extreme bending. The
exact solution for the deformed shape of this model is a perfect circle, since the
bending moment, and hence the curvature, is constant along the beam. The
analytical solution for this problem is given in Eq. (5.1) to Eq. (5.3) (Almeida et al.,
2011). When the bending moment reaches the value of M = 2z(EI/L), the beam is

rolled up into a circle.

0 :% (5.1)
u= L(l—Si%ej (5.2)
e (1—2036) (5.3)

The objective of this example is to illustrate the ability of the nonlinear
formulations to handle very large rotations, as long as the structural members are
subdivided into small elements. Figure 5.13 illustrates the cantilever beam
discretized with 1 and 10 elements, subjected to twice the moment necessary to roll
it according to the analytical solution. Clearly, a good discretization is fundamental

to simulate the nonlinear behavior.
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A=0.50
A=0.75 3=0.25
2=1.00 2=0.00
2=2.00
(a)
3=0.50 =025
A=0.75
A=0.00

(b)

Figure 5.13 — Example 2: Deformed configurations of the cantilever beam with (a) 1-element and

(b) 10-elements discretization

The geometrically nonlinear behavior of this model has no load limit point.
Therefore, using the LCM, the equilibrium paths for the horizontal and vertical
displacements at the tip of the beam, discretized with 10 elements, are shown in
Fig. 5.14 and Fig. 5.15, respectively. In each graph, the results obtained with
different formulations are compared with good agreement to the analytical solution.
Again, it is checked that the nonlinear formulations are numerically equivalent for
this type of problem, and a discretization of the beam into 10 elements is sufficiently
fine. However, efficiency is not the same for each formulation.

In the sequence, Table 5.6 to Table 5.9 bring a study on the performance of
the incremental-iterative methods and the formulations to solve this problem when
different types of increment and iteration schemes are considered. An initial
increment of 0.01, a maximum number of iterations per step of 500, a tolerance for
convergence of 10°, and a desired number of iteration of 3 (when the increment is

adjusted) are employed for all analyzes.
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Figure 5.14 — Example 2: Horizontal displacement of the free end with a 10-elements

discretization
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Figure 5.15 — Example 2: Vertical displacement of the free end with a 10-elements discretization
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Table 5.6 — Example 2: Number of steps and iterations for constant increments with standard

iteration scheme

SR20 | LR20 | LR4O CR Mean
=y 1001300 | 100490 | 100[490 | 100|200 | 100]370
(3.00) (4.90) (4.90) (2.00) (3.70)
wom | 100300 | 88[412 | 88[412 | 100]200 | 94331
(3.00) (4.68) (4.68) (2.00) (3.52)
99 | 296 99197 | 99247
ALCM_FNP 175 99) X X (2.99) (2.49)
99 | 296 99197 | 99247
ALCM_UNP 5 99) X X (2.99) (2.49)
981292 | 98]473 | 98473 | 98[195 | 98358
ALCM_CYL ]~ 9g) (4.83) (4.83) (1.99) (3.65)
100300 | 100490 | 100[490 | 100200 | 100|370
ALCM_SPH | = 3 g0 (4.90) (4.90) (2.00) (3.70)
ey | 981294 | 99[479 | 99]479 | 98]196 | 99362
(3.00) (4.84) (4.84) (2.00) (3.66)
ORCM X X X X X
cocn | 981292 | 98[473 | 98[473 | 98]195 | 98358
(2.98) (4.83) (4.83) (1.99) (3.65)
o 991296 | 97470 | 97470 | 99[198 | 98342
(2.99) (4.85) (4.85) (2.00) (3.49)

Table 5.7 — Example 2: Number of steps and iterations for constant increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
100 1101 1001101 | 100] 1101
WCM (11.01) X X (11.01) | (11.01)
ALCM FNP| X X X X X
ALCM_UNP| X X X X X
981682 | 98(824 | 98|824 | 98682 | 98|753
ALCM_CYL "6 96) (8.41) (8.41) (6.96) (7.68)
ALCM_SPH| X X X X X
Ny | 981682 | 98[821 | 98[821 | 98]682 | 98752
(6.96) (8.38) (8.38) (6.96) (7.67)
ORCM X X X X X
cocv | 981683 | 98821 | 98[821 | 98[683 | 98752
(6.97) (8.38) (8.38) (6.97) (7.67)
o 991787 | 98[822 | 98|822 | 99|787 | 98[802
(7.95) (8.39) (8.39) (7.95) (8.18)
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Table 5.8 — Example 2: Number of steps and iterations for adjusted increments with standard

iteration scheme

SR20 | LR20 | LR4O CR Mean
=y 100300 | 1429 4329|1429 [4320| 29|76 | 7472259
(3.00) (3.03) (3.03) (2.62) (3.02)
wom | 100[300 | 3851218 | 385]1218 | 27]69 | 224]701
(3.00) (3.16) (3.16) (2.56) (3.13)

99 | 296 29|76 | 64186

ALCM_FNP 75 99) X X (2.62) (2.91)
99 | 296 29176 | 64186

ALCM_UNP 5 99) X X (2.62) (2.91)
081292 | 4201284 | 420]1284 | 26|66 | 241[732

ALCM_CYL | ") 9g) (3.06) (3.06) (2.54) (3.04)
100 [300 | 1428|4326 | 1428 [4326| 29|76 | 746 |2257

ALCM_SPH | = 3 g0 (3.03) (3.03) (2.62) (3.03)
Ny | 981294 | 4201283 | 4201283 | 27[69 | 241732
(3.00) (3.05) (3.05) (2.56) (3.04)

ORCM X X X X X
cocm | 981292 | 98473 | 98[473 | 98]195 | 98358
(2.98) (4.83) (4.83) (1.99) (3.65)
o 991296 | 696 | 2152 | 6962152 | 37|88 | 3371032
(2.99) (3.00) (3.00) (2.38) (3.06)

Table 5.9 — Example 2: Number of steps and iterations for adjusted increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
wom | 2981908 | 4611440 | 461[1440 | 298] 908 | 3801174

(3.05) (3.12) (3.12) (3.05) (3.00)

ALCM FNP| X X X X X

ALCM_UNP| X X X X X

255|775 | 388 | 1184 | 3881184 | 255|775 | 322|980

ALCM_CYL [ 3 0g) (3.05) (3.05) (3.04) (3.04)

ALCM_SPH| X X X X X
VNG | 2551775 | 3881184 | 3881184 | 255775 | 322|980

(3.04) (3.05) (3.05) (3.04) (3.04)
OReN | 39911101 | 488 | 1493 | 488 | 1493 | 361 1108 | 4241112
(3.07) (3.06) (3.06) (3.07) (2.62)
cocv | 981683 | 98[821 | 98[820 | 98[683 | 98752
(6.97) (8.38) (8.38) (6.97) (7.67)
Vean | 2531848 | 3651224 | 365| 1224 | 253[850 | 3090|1037
(3.35) (3.35) (3.35) (3.36) (3.36)
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Using constant increments and standard iterations, the ORCM failed to obtain
the solution because of the same problem presented in the previous example: the
iterative corrections cause the load ratio to explode to a very high value during the
fourth step. The ALCM_FNP and ALCM_UNP, using the formulations LR20 and
LR40, were able to follow the solution up to a load ratio of 0.91, but were stuck at
this point. The LR20 and LR40O formulations also needed more iterations per step
to complete the analysis when other methods were used. The CR formulation is the
most efficient for this case because it required the lowest number of iterations in
each step.

By changing the iteration scheme to the modified version, only the
ALCM_CYL, MNCM, and GDCM were able to capture full solution using all
formulations. The WCM solved the problem with the SR20 and CR formulations,
but with a higher number of iterations than other methods. As expected, the number
of iterations of all analyses was increased compared to the tests with the standard
iteration scheme.

Considering an adjusted increment, it can be observed that the analyzes with
the LR20 and LR40 formulations are less efficient, since the step sizes to honor
the desired number of iterations need to be very small. The CR formulation turns to
be the best choice in this case, as it requires much fewer steps and iterations for
each solution method. The same problems experienced by the ALCM_FNP,
ALCM_UNP, and ORCM in the tests of Table 5.6, also occur with the adjusted
increment.

When the adjusted increment and the modified iteration scheme are
employed, the WCM can be used with the LR20 and LR4O formulations, which is
not possible when the modified iterations are performed with constant increments.
Furthermore, the ORCM can be used without problems. However, these analysis
settings provide a larger number of steps and total iterations when compared to the
previous tests.

In all analyzes of this model, the same performance was registered by the
ALCM_FNP and ALCM_UNP methods and by the LR20 and LR40 formulations.
These formulations, however, presented more convergence problems and required
more iterations to reach the final solution. The ALCM_CYL, MNCM, and GDCM
were the only methods that did not have any trouble to solve the problem with any

nonlinear formulation.
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5.4.Williams Toggle Frame

The Williams Toggle Frame is a low-rise arch composed of two beams with
clamped ends and a vertical concentrated load applied at the apex. Figure 5.16
illustrates the out-of-scale model for easy viewing of dimensions. The arch has a
span of 65.715 cm and a height of 0.98 cm. The material of the beams has a modulus
of elasticity of E = 199714 MPa, the cross-section is circular with a diameter of
0.721 cm, and the magnitude of the applied load is P = 0.25 kN. The positive
direction of the vertical displacement of the apex, v, which is the only effective
degree-of-freedom, is also indicated. Euler-Bernoulli bending behavior is assumed.

P =025kN
) v 0.721 cm
0.98 cm T
! 65.715 cm ! E=199714 MPa

Figure 5.16 — Williams Toggle Frame

This model was first investigated by Williams (1964), who treated the frame
both analytically and experimentally taking into account finite changes in geometry.
Despite being a simple model, it has a highly nonlinear response. Depending on its
dimensions, it exhibits load limit points with snap-through behavior. Therefore, this
example has the intention to demonstrate the ability of the implemented methods to
capture this type of nonlinear behavior.

Figure 5.17 shows the equilibrium path of the Williams Toggle Frame,
considering a discretization of each beam into 10 equal length elements. The results
of the MASTAN program (McGuire et al., 2000) are compared to the results of the
Ftool program. The continuation method available in the MASTAN program is the
WCM, which is able to capture the solution beyond load limit points and matches
with good accuracy the results provided by the Ftool program using the same
method. It is also shown the equilibrium path obtained with the Ftool program using
the LCM. As expected, this method cannot capture full solution. When the load
ratio exceeds the first load limit point, the method will either diverge or snhap
through the unstable behavior to find another equilibrium configuration

corresponding to the new load level, as illustrated.
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Vertical Dizplacement (v) [m]

Figure 5.17 — Equilibrium path of the Williams Toggle Frame

As in the previous examples, the results obtained for the equilibrium
configurations, using different methods, formulations, and analysis options, are
numerically the same in all the analyses that successfully trace the equilibrium path.
The difference lies only on the number of steps and iterations.

The performance evaluation of the solution methods and geometrically
nonlinear formulations implemented in the Ftool program is found in Table 5.10 to
Table 5.13. The numerical parameters for all analyses are the same as those used in
the previous examples: initial increment of 0.01, maximum number of iterations per
step of 500, tolerance for convergence of 107, and desired number of iteration of 3
(when the increment is adjusted). In the following tables, an asterisk indicates when
the solution could be obtained up to the total applied load, but snapping through the

unstable region of the equilibrium path.
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Table 5.10 — Example 3: Number of steps and iterations for constant increments with standard

iteration scheme

SR20 | LR20 | LR4O CR Mean
=y 100157 | 100|127 | 100[127 | 100|133 | 100|136
@7y | @2n* | @wenr | @33 | (136)

214|215 | 188|189 | 162|162 | 188189

WCM X (1.00) (1.01) (1.00) (1.00)
291(290 | 293|293 | 293|293 | 237|237 | 279|278

ALCM_FNP 11 00) (1.00) (1.00) (1.00) (1.00)
201|290 | 293|293 | 293]293 | 237|237 | 279|278

ALCM_UNPT 1 00) (1.00) (1.00) (1.00) (1.00)
389389 | 389|389 | 389389 | 389389 | 389|389

ALCM_CYL L 1 09) (1.00) (1.00) (1.00) (1.00)
154|154 | 154|154 | 154|154 | 154|154 | 154|154

ALEM_SPH 1 ™1 00) (1.00) (1.00) (1.00) (1.00)
Uney | 3891389 | 389(389 | 389389 | 389(389 | 389|389
(1.00) (1.00) (1.00) (1.00) (1.00)

orem | 3971397 | 394[394 | 304(394 | 388388 | 393|393
(1.00) (1.00) (1.00) (1.00) (1.00)

cocnv | 3881388 | 383383 | 388(388 | 388388 | 388338
(1.00) (1.00) (1.00) (1.00) (1.00)

oan | 300[307 | 290(294 | 287|291 | 272|275 | 287291
(1.02) (1.01) (1.01) (1.01) (1.01)

Table 5.11 — Example 3: Number of steps and iterations for constant increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean

LCM X X X X X
2251262 | 208|262 | 149]202 | 194|242

WEM X (1.16) (1.26) (1.36) (1.25)
200380 | 293|391 | 293[391 | 237[279 | 278360

ALCM_FNP 11 31 (1.33) (1.33) (1.18) (1.29)
200380 | 293|391 | 293[391 | 237[279 | 278360

ALCM_UNP | =1 31y (1.33) (1.33) (1.18) (1.29)
389389 | 389389 | 389389 | 389[389 | 389|389

ALCM_CYL [~ ) (1.00) (1.00) (1.00) (1.00)
154298 | 154]299 | 154(299 | 154|204 | 154298

ALCM_SPH | =1 g4 (1.94) (1.94) (1.91) (1.94)
ey | 3891389 | 389[389 | 389(389 | 389389 | 389339
(1.00) (1.00) (1.00) (1.00) (1.00)

orem | 400(400 | 400400 | 400[400 | 388388 | 397|397
(1.00) (1.00) (1.00) (1.00) (1.00)

cocn | 338388 | 388]333 | 388(388 | 388[388 | 388388
(1.00) (1.00) (1.00) (1.00) (1.00)

Vean | 3291375 | 316[364 | 314364 | 291|326 | 312|356
(1.14) (1.15) (1.16) (1.12) (1.14)



DBD
PUC-Rio - Certificação Digital Nº 1712771/CA


PUC-Rio- CertificagaoDigital N° 1712771/CA

176

Table 5.12 — Example 3: Number of steps and iterations for adjusted increments with standard

iteration scheme

SR20_ | LR20 | LR4O CR Mean
=y 211150 | 17(46 | 17]46 | 16|31 | 1868
@14 | e | ey | e | 378

20138 | 20(38 | 15|23 | 18|33

WCM X (1.90) (1.90) (153) (1.83)
22147 | 21]44 | 21|44 | 19|36 | 21(43
ALCM_FENP 5 1) (2.10) (2.10) (1.89) (2.05)
22147 | 21]44 | 21|44 | 19|35 | 21(43
ALCM_UNP 5 14) (2.10) (2.10) (1.84) (2.05)
21140 | 21]40 | 21140 | 17[24 | 2036
ALCM_CYL |1 99 (1.90) (1.90) (141) (1.80)
20144 | 19140 | 19|40 | 18]35 | 1940
ALEM_SPH 5 20) (2.11) (2.11) (1.94) (2.11)
21140 | 21]40 | 21140 | 17[24 | 2036

MNCM (1.90) (1.90) (1.90) (L41) (1.80)
3459 | 22]42 | 22|42 26|48

ORCM (1.74) (1.91) (1.91) X (1.85)
cocnv | 3881388 | 383383 | 388[388 | 383383 | 388388
(1.00) (1.00) (1.00) (1.00) (1.00)

o 691102 | 61]80 | 61180 | 64|75 | 6384
(1.48) (131) (131) (L17) (1.33)

Table 5.13 — Example 3: Number of steps and iterations for adjusted increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
wem 34[101 | 48|130 | 428|130 | 47[156 | 44]130

(2.97) 2.71) 2.71) (3.32) (2.95)
751215 | 770222 | 77|222 | 73|210 | 76217

ALCM_FNP 15 87y (2.88) (2.88) (2.88) (2.86)

74|214 | 770222 | 77|222 | 73|210 | 75|217

ALCM_UNP |5 59 (2.88) (2.88) (2.89) (2.89)

62|172 | 63|174 | 63|174 | 62|171 | 63|173

ALCM_CYL [ 5 79) (2.76) (2.76) (2.76) (2.75)

71[206 | 71]207 | 71|207 | 70]203 | 71206

ALCM_SPH | 90 (2.92) (2.92) (2.90) (2.90)

unen | 621172 | 63[174 | 63[174 | 62[171 | 63]173
2.77) (2.76) (2.76) (2.76) (2.75)
64183 62[172 | 63178
ORCM (2.86) X X 2.77) (2.83)
cocn | 3381388 | 383[388 | 333383 | 383]333 | 388388
(1.00) (1.00) (1.00) (1.00) (1.00)
ean | 1041206 | 112|217 | 112]217 | 105]210 | 108[212
(1.98) (1.94) (1.94) (2.00) (1.96)
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Considering constant increments with standard iterations, the LCM is able to
reach the final equilibrium configuration, but snapping through the unstable
configurations, as in Fig. 5.17. A large number of iterations is performed to find a
new solution after the load limit point is reached (43 with SR20, 12 with LR20 and
LR40, and 21 with CR). The WCM was not able to solve the problem with the
SR20 formulation. It goes well until a point at about halfway the end of the
analysis, where it stops incrementing and gets stuck. In general, all other methods
and formulations had similar performances for this model and analysis settings. The
initial increment of the analysis is small for this model, resulting in an average
number of iterations per step of 1.00. A larger initial increment, or the use of
adjusted increments, would be more efficient.

When the modified iteration scheme is used (Table 5.11), few differences are
experienced, since the increment is small. One of them is that the LCM is not able
to find a new solution after reaching the load limit point, diverging from the
equilibrium path. Some of the other methods had their average number of iterations
slightly increased, but the overall performance was quite homogeneous.

In analyzes with adjusted increments and standard iterations, the LCM
captured the solution jumping over the unstable region. A common issue for most
of these analyses is that a non-smooth curve was obtained due to large increments
in each step, especially when the WCM method or the CR formulation was selected.
A reason for this is that the desired number of iterations may be too large for this
problem. Decreasing it would be the best option for getting a smooth curve with a
reasonable number of steps. This issue did not occur with the GDCM, which is not
based on the number of iteration, but on the GSP, to adjust the increment size.

Finally, running analyzes with adjusted increments and modified iterations
resulted in smoother curves than those obtained in the tests of Table 5.12, but with
less steps and total iterations needed by the analyzes of Table 5.10 and Table 5.11.
The ORCM, however, failed to converge near the first load limit point when using
the LR20O and LR40 formulations. The LCM also diverged when the load limit
point was reached.
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5.5.Lee Frame

The Lee Frame is a two-beam model, rigidly connected to each other in a 90-
degree angle and simply supported at the other end, as illustrated in Fig. 5.18. Each
beam is 120 cm long and is discretized into 10 equal length elements for this
example. Euler-Bernoulli bending behavior is assumed. The material has a modulus
of elasticity of E = 70632 MPa, the cross-section has an area of A = 6.0 cm? and a
moment of inertia of | = 2.0 cm*. A vertical point load is applied 24 cm from the
joint, with a magnitude of P = 20 kKN. The positive directions of the displacements
and rotation of the loaded node (u, v, ) are also indicated in the figure.

P =20.0kN

T |
P ‘

E =70632 MPa
A= 6.0 cm?
I=20cm*

120 cm

o

| | |
! 24 cm ‘ 96 cm

Figure 5.18 — Lee frame

This model is a well-known example for evaluating nonlinear solvers, since
its behavior is highly nonlinear and the equilibrium path includes both snap-through
and snap-back. It was first studied and solved by Lee et al. (1968). The finite
element solution for the Lee Frame with the physical and geometric properties
presented in Fig. 5.18 is given in Table 5.14 (Cichon, 1984).
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Table 5.14 —Solution of the Lee Frame

P [kN] u [cm] v [cm]

0.0000 0.0000 0.0000
4.9033 0.3102 3.7514
12.7378 4.5534 18.2120
17.0194 14.5370 35.9240
18.3815 25.4490 47.0730
13.2291 57.3590 60.3470
-0.7074 79.6120 52.8500
-9.6871 90.3140 58.2570
2.6526 88.9740 87.6070
14.2157 86.1990 91.8670

The expected solution is compared to the results obtained with the Ftool
program. Figure 5.19 shows the equilibrium path for the horizontal displacement of
the loaded node, while Fig. 5.20 shows the equilibrium path for the vertical
displacement. These results were obtained for the 10-elements discretization of
beams and match with good accuracy the solution given by Cichon (1984). Two
load limit points are identified, a maximum at the load ratio of A = 0.92, and a
minimum at the load ratio of A = -0.47. A displacement limit point, with snap-back
behavior, is also identified in the equilibrium path of the vertical displacement.

The deformed configurations at different points of the equilibrium path are
shown in Fig. 5.21, with the corresponding load ratio values provided next to each
deformed shape. The bold values indicate the equilibrium configurations
corresponding to a load limit point.

The internal force diagrams (axial force, shear force, and bending moment),
provided by the Ftool program, are given in Fig. 5.22. These internal forces
correspond to the total applied load and the diagrams are plotted over the initial
configuration of the model to help visualization of the results.

The comparative study of the efficiency and performance of the solution
methods, using different formulations and analysis options, is presented in Table
5.15 to Table 5.18. An initial increment of 0.01, a maximum number of iterations
per step of 500, a tolerance for convergence of 10°, and a desired number of

iteration of 3 (when the increment is adjusted) were employed in all analyses.
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Figure 5.19 — Equilibrium path for the horizontal displacement
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Figure 5.20 — Equilibrium path for the vertical displacement
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Figure 5.21 — Deformed configurations of the Lee Frame
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Figure 5.22 — Internal force diagrams of the Lee Frame: (a) axial force, (b) shear force, and (c)

bending moment
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Table 5.15 — Example 4: Number of steps and iterations for constant increments with standard

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
WCM X X X X X
ALCM FNP| X X X X X
ALCM_UNP| X X X X X
1015 [ 1597 | 1015 | 1790 | 1015 | 1790 | 1015 | 1015 | 1015 | 1548
ALCM_CYL 77 57) (1.76) (1.76) (1.00) (153)
ALCM_SPH X X X X X
NG | 108311666 | 1085 1872 | 1085 1673 | 1017 | 1017 | 1068 | 1607
(1.54) (1.73) (1.73) (1.00) (1.50)
ORCM X X X X X
cocv | 1014 1598|1014 1787 | 10141787 | 1015 | 1015 | 1014 | 1547
(1.58) (1.76) (1.76) (1.00) (1.53)
oan | 10371620 1033 | 1816 1038 | 1817 1016 | 1016|1032 1567
(1.56) (1.75) (1.75) (1.00) (1.52)

Table 5.16 — Example 4: Number of steps and iterations for constant increments with modified

iteration scheme

SR20_| LR20 | LR4O CR Mean
LCM X X X X X
WCM X X X X X

ALCM_FNP| X X X X X

ALCM_UNP| X X X X X

1015 4543 | 1015 | 4607 | 1015 | 4608 | 1015 | 4502 | 1015 | 4565

ALCM CYL 1" "448) | (a58) | (a54) | (444 | (450)

ALCM_SPH | X X X X X
NG | 1001 [4528 1000 | 4596 | 1000 4596 | 1013 | 4494 | 1004 4554

(452) | (460) | (460) | (444) | (454)
ORCM X X X X X
cocm | 101414525 1014|4580 | 1014 4580 | 1015 | 4491 | 1014 4544

(446) | (452 | (452 | (a42) | (448
ean | 1010|4532 1010 4504 1010 | 4595 1014 4496 | 1011 | 4554

(449) | (455 | (455) | (443) | (450)
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Table 5.17 — Example 4: Number of steps and iterations for adjusted increments with standard

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
WCM X X X X X

34811026 | 402 | 1187 | 4001180 | 210|624 | 3401004

ALCM_FNP 5 95) (2.95) (2.95) (2.97) (2.95)

246 | 761 239779 | 196593 | 227|711
ALCM_UNP | = 3 9 X (3.26) (3.03) (3.13)
181(533 | 207|611 | 207|611 | 109|311 | 176|517

ALCM_CYL | = 5 o4 (2.95) (2.95) (2.85) (2.94)

ALCM SPH| X X X X X
NGy | 1911561 | 222[655 | 222[655 | 106303 | 185544

(2.94) (2.95) (2.95) (2.86) (2.94)
ORCM X X X X X
cocv | 1014 11598 | 1014|1787 | 1014|1787 | 1015 1015 | 1014 | 1547

(1.58) (1.76) (1.76) (1.00) (1.53)
ean | 3961896 | 461]1060 | 416]1002 | 327|560 | 397 [872

(2.26) (2.30) (2.41) (1.74) (2.20)

Table 5.18 — Example 4: Number of steps and iterations for adjusted increments with modified

iteration scheme

SR20 | LR20 | LR4O CR Mean
LCM X X X X X
WCM X X X X X

2089 | 8854 | 3195 | 9457 | 3194 | 9454 | 2572 | 7725 | 2988 | 8873

ALCM_FNP 15 g6) (2.96) (2.96) (3.00) (2.97)

2064 8780 | 3172 9390 | 3179 | 9410 | 2545 | 7646 | 2965 | 8807
ALCM_UNP |5 96) (2.96) (2.96) (3.00) (2.97)

1567 [4705 | 1625 | 4881 | 1625 | 4881 | 1437 | 4315 | 1564 | 4696
ALCM_CYL [~ 3 o) (3.00) (3.00) (3.00) (3.00)

2041 8830 | 2962 | 8896 | 2962 | 8896 | 2646 | 7948 | 2878 | 8643

ALCM_SPH 1 3 g0 (3.00) (3.00) (3.00) (3.00)

VNG | 16054820 1583 4756 | 1583 | 4755 1433 | 4304 | 1551 | 4659
(3.00) (3.00) (3.00) (3.00) (3.00)
ORCM X X X X X
cocv | 101414525 | 101414580 | 10144580 | 1015 | 4491 | 1014 | 4544
(4.46) (4.52) (4.52) (4.42) (4.48)
oan | 218067522259 6993 | 2260 | 6996 | 1941 6072 | 2160 | 6703
(3.10) (3.10) (3.10) (3.13) (3.10)
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Only three methods worked well for the analysis of the Lee Frame by means
of constant increments and the standard iteration scheme: ALCM_CYL, MNCM,
and GDCM. A large number of steps was executed by these methods to complete
the analysis, which indicates that the prescribed increment may be too small. These
methods are more efficiently performed when the CR formulation is selected, since
less iterations are required for a similar number of steps. The other methods faced
numerical instability problems. Some expected problems that occurred were the
struggles of the LCM to handle load limit points and the WCM to deal with
displacement limit points, as explained earlier in this work.

The main effect of considering the modified iteration scheme to the analyzes
with constant increments is the increase in the number of iterations per step. In this
case, it is also verified that the CR formulation is no longer as advantageous as in
the case of standard iterations.

Considering adjusted increments with standard iterations, both the
ALCM_FNP and the ALCM_UNP become able to solve the problem. The latter,
however, fails when using the LR20O formulation. The other methods that are based
on the number of iterations to adjust the increment size had their number of steps
decreased, making analysis more efficient. The CR formulation, again, happen to
be the best choice between the nonlinear formulations, considering its low number
of iterations in each step.

Finally, Table 5.18 shows the results of the analyzes with adjusted increments
and modified iterations. These analysis options allowed more methods to solve the
problem, despite the enormous number of steps required. The ORCM, together with
the LCM and WCM, were the only methods that did not work well for this problem,
considering any nonlinear formulation or analysis option.

For the next results, the ALCM_CYL was used with constant increments of
0.01 and standard iterations, totaling 1015 steps. The behavior of nodal
displacements and applied load ratio throughout the analysis is investigated
separately. Figures 5.23 and 5.24 show the value and the increment of horizontal
(red) and vertical (blue) displacements of the loaded node in each analysis step.
Figures 5.25 and 5.26 give the total value and the increment of the load ratio in each
step. The increment of load ratio is not constant, but its values are those that provide
a constant increment of a cylindrical arc-length. By visual inspection, it is possible

to notice some relations between these curves and the equilibrium path of the model.
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P Ftool - Two-Dimensional Frame Analysis Tool model_lee_frameftl
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Figure 5.23 — Nodal displacements for each step
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6. Final Considerations

6.1.Conclusions

The main observations about the overall behavior of the implemented solution

methods and nonlinear formulations, for the analyzed models, are the following:

e The results provided by the different incremental-iterative methods and
geometrically nonlinear formulations are numerically equivalent. That is,
when the analysis is successfully performed, the converged equilibrium
configurations are in the same curve (considering a numerical tolerance),
regardless the method or formulation used to solve the problem. What
distinguishes the analyzes with one or another method and formulation
is the ability to capture the complete solution and the efficiency to
accomplish it.

e The ALCM_CYL, MNCM, and GDCM are the most robust methods.
These were the only methods able to get the complete solution in all
analyzes without problems.

e The CR formulation is the most efficient, when considering the required
number of steps and iterations per step to trace the equilibrium path. In
most tests, considering the standard iteration scheme, this formulation
needed less iterations to achieve convergence in each step than other
formulations. This conclusion is not valid when the modified iteration
scheme is used.

e The performance of the ALCM_FNP and ALCM_UNP are identical, or
very similar, as well as the performance of the LR20 and LR40O
formulations.

e The LR20 and LR40O formulations usually require more steps and
iterations, and are more prone to face convergence problems.

e More methods fail to solve the problem with the modified iteration

scheme than with the standard scheme.
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The above observations on the efficiency and robustness of the solution
methods and formulations are based on the results of a few models and cannot be
taken as a rule for every geometrically nonlinear analysis of two-dimensional frame
models. Even the same models, if analyzed with other program, may not lead to the
same exact conclusions. This is because each computational implementation of the
solution algorithms has some particular considerations that cause small variations
in the analysis performance. However, similar conclusions are expected for
problems of the same nature. The important point is to realize that what was stated
in the introduction of this work is valid (Leon et al., 2011 and Bergan et al., 1978):

“One single solution method may not be capable of solving any general
nonlinear problem. Dealing with numerical procedures, exposes us to problems of
convergence and numerical stability that naturally occur in these analyses.
Therefore, a computer program for nonlinear analysis should possess several
alternative algorithms for the solution of the nonlinear system of equations.”

Many options for performing the geometrically nonlinear analysis were
implemented in the new version of the Ftool program, as described in detail
throughout this document. These options include multiple solution methods and
nonlinear formulations, different types of increment strategies and iteration
schemes. In addition, the possibility to run the analysis in an interactive-adaptive
fashion, allowing users to control the flow of the analysis, intervene when problems
appear, and redefine parameters, is of great contribution to make Ftool an
appropriate platform for nonlinear analyzes. All the new developments for solving
the geometrically nonlinear problem were implemented in Ftool without
compromising its original operation and respecting its educational philosophy,
which is one of the most remarkable features of the program.

The focus on the educational aspect, with intuitive resources to deal with all
the parameters involved in a nonlinear analysis, is essential to simplify the analysis
process and make it easier to comprehend. A consequence is that the overall
numerical experimentation process becomes more accessible to those with little
experience and knowledge on the subject, arousing the interest of students in
learning about structural nonlinearity. Therefore, it is expected that this new tool
will contribute considerably to the teaching of structural analysis with second-order
effects.
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6.2.Future Works

Some suggestions for future implementations are:

Parallel analysis: As defined by Gattass & Abel (1983), a parallel
analysis are those analysis that do not directly give the response of the
structure but aid in the comprehension of its behavior or in the selection
of algorithms and analysis parameters. In the context of geometric
nonlinearity, a handy parallel analysis is the ability to compute buckling
(or critical) loads. The buckling loads provide an idea about the stability
of the structure and can be used to aid the selection of the step increments.
Buckling modes, which are the deformed configuration corresponding to
the buckling loads, are also an interesting result to provide when
performing the parallel analysis. These results can be obtained from an
eigenvalue problem, which should be implemented in the analysis solver.
Deformed configuration: To better represent the deflected shape of the
elements, instead of straight lines between nodal coordinates, it is
proposed to interpolate nodal rotations using the Hermitian shape
functions over the corotated configuration. This would be useful when
poorly discretized elements are used.

Automatic discretization: An important feature to facilitate modelling,
when considering a nonlinear analysis, is allowing an automatic
discretization of beam elements into a desired number of sub-elements.
Inclusion of new sources of nonlinearities: With the developed general
algorithm for the solution of the system of nonlinear equilibrium
equations, the inclusion of a new source of nonlinearity is
straightforward. Material nonlinearity and the consideration of plastic
hinges are some important nonlinear effects in the analysis of reticulated

structures that should be included in the program.
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